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Foreword

These proceedings contain papers to be presented in the form of workshop contributions within the 9th Inter-
national Conference of Probabilistic Graphical Models (PGM 2018). The papers are interpreted as working
(versions of the) papers: they describe some work in progress.

We wish all the participants in the conference PGM 2018 a pleasant stay in Prague.

In Prague, September 11, 2018 Milan Studený and Václav Kratochvíl
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Abstract
OpenMarkov is an open-source software tool for probabilistic graphical models. It has been de-

veloped especially for medicine, but it has also been used for building applications in other fields,
in a total of more than 30 countries. In this paper we explain how to use it as a pedagogical tool
to teach the main concepts of Bayesian networks, such as conditional dependence and indepen-
dence, d-separation, Markov blankets, explaining away, etc., and some inference algorithms: logic
sampling, likelihood weighting, and arc reversal. The facilities for learning Bayesian networks
interactively can be used to illustrate step by step the performance of the two basic algorithms:
search-and-score and PC.
Keywords: OpenMarkov; Bayesian networks; d-separation; inference; learning Bayesian net-
works.

1. Introduction

Bayesian networks (BNs) (Pearl, 1988) and influence diagrams (Howard and Matheson, 1984) are
two types of probabilistic graphical models (PGMs) widely used in artificial intelligence. Unfortu-
nately, the theory that supports them is complex. Our computer science students, in spite of their
relatively strong mathematical background, find it hard to intuitively grasp some of the fundamental
concepts, such as conditional independence and d-separation. Additionally, we have been teach-
ing PGMs to health professionals, most of them medical doctors, for more than two decades, and
although we avoid the more complex aspects (for instance, we do not speak of d-separation and
only teach them the variable elimination algorithm), some of the basic notions important for them,
such as conditional independence, are difficult to convey. In this paper we show how OpenMarkov,
an open-source tool with an advanced graphical user interface (GUI) has allowed us to make more
intuitive some concepts that we found very difficult to explain before we had it.

The rest of this paper is structured as follows: Section 2 introduces the background (notation,
definitions, and an overview of OpenMarkov), Section 3, the core of the paper, explains how to
teach BNs, Section 4 presents a brief discussion, and Section 5 contains the conclusion.

2. Background

2.1 Basic notation and definitions

In this paper we represent variables with capital letters (X) and their values with lower-case letters
(x). A bold upper-case letter (X) denotes a set of variables and a bold lower-case letter (x) denotes a
configuration of them, i.e., the assignment of a value to each variable in X. In this paper we assume
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that each variable has a finite set of values, called states. When a variable X is boolean, we denote
by +x the state “true”, “present”, or “positive”, and by ¬x the state “false”, “absent”, or “negative”.

Two variables X and Y are (a priori) independent when

∀x, ∀y, P (x, y) = P (x) · P (y) . (1)

When P (y) 6= 0 for a particular value of Y , this implies that

∀x, P (x | y) = P (x) , (2)

i.e., knowing the value taken by Y does not alter the probability of X .
We say that two variables X and Y are conditionally independent given a set of variables Z,

and denote it as IP (X,Y | Z), when

∀x, ∀y, ∀z, P (x, y | z) = P (x | z) · P (y | z) . (3)

In a directed graph, when there is a linkX → Y , we say thatX is a parent of Y and Y is a child
of X . The set of parents of a node X is denoted by Pa(X), and pa(X) represents a configuration
of them. When there is a directed path from X to Y , we say that X is an ancestor of Y and Y is a
descendant of X .

2.2 Bayesian networks

A PGM consists of a graph and a probability distribution, P (v), such that each node in the graph
represents a variable in V; for this reason we often speak indifferently of nodes and variables.
The relation between the graph and the distribution depends on the type of PGM: a BN, a Markov
network, an influence diagram, and so forth.

In the case of a BN, the graph is directed and acyclic, and its relation with the probability
distribution is given by the following properties; we can take any one of them as the definition of
a BN and then prove that the other two derive from it (Pearl, 1988; Neapolitan, 1990; Koller and
Friedman, 2009):

1. Factorization of the probability: The joint probability is the product of the probability of
each node conditioned on its parents, i.e.,

P (v) =
∏

X∈V
P (x | pa(X)) .

2. Markov property. Each node is independent of its non-descendants given its parents, i.e., if
Y is a set of nodes such that none of them is a descendant of X , then

P (x | pa(X),y) = P (x | pa(X)) .

3. d-separation. If two nodes X and Y are d-separated in the graph given a set of nodes Z,
which we denote by IG(X,Y | Z), then they are probabilistically independent given Z:

∀X, ∀Y, ∀Z, IG(X,Y | Z) =⇒ IP (X,Y | Z) .
Two nodes are d-separated when there is no active path connecting them. A path is active if
every node W between X and Y satisfies this property:

(a) if the arrows that connect W with its two neighbors converge in it, then W or at least
one of its descendants is in Z;

(b) else, W is not in Z.

Teaching Bayesian networks with OpenMarkov
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2.3 OpenMarkov

OpenMarkov (see http://www.openmarkov.org) is a software tool for PGMs developed at
the National University for Distance Education (UNED) in Madrid, Spain. It consists of around
115,000 lines of Java code (excluding comments and blanks), structured in 44 maven sub-projects
and stored in a git repository at Bitbucket. The first versions were distributed under the European
Union Public Licence (EUPL), version 1.1, while version 0.3 of OpenMarkov and the next ones will
be distributed under the GNU public license, version 3 (GPLv3).

It offers support for editing and evaluating several types of PGMs, such as BNs (Pearl, 1988),
influence diagrams (Howard and Matheson, 1984), Markov influence diagrams (Dı́ez et al., 2017),
and decision analysis networks (Dı́ez et al., 2018). Its native format for encoding the networks is
ProbModelXML (Arias et al., 2012).

It has been designed mainly for medicine; with OpenMarkov and its predecessor, Elvira (Elvira
Consortium, 2002), our group has built models for more than 10 real-world medical problems, each
involving dozens of variables. Some groups have used it to build PGMs in other fields, such as
planning and robotics (Oliehoek et al., 2017). To our knowledge, it has been used at universities,
research institutions, and large companies in more than 30 countries.

2.4 Evidence propagation in BNs with OpenMarkov

In a diagnostic problem, the assignment of a value to a variable as a consequence of an observation
is called a finding. The set of findings is called evidence. The propagation of evidence consists in
computing the posterior probability of some variables given the evidence.

In OpenMarkov chance variables are drawn as rounded rectangles and colored in cream, as
shown in Figure 1. When a finding is introduced (usually by double-clicking on the value of the
variable), OpenMarkov propagates it and shows the posterior probability of every state of every
variable by means of a horizontal bar. It is possible to have several sets of findings, each called an
evidence case, and display several bars for every state.

3. Teaching Bayesian networks

3.1 Basic concepts of probability and BNs

3.1.1 CORRELATION AND INDEPENDENCE

Even though the concepts of probabilistic dependence (correlation) and independence are mathe-
matically very simple (cf. Eqs. 1 and 3), many students have difficulties to understand them intu-
itively, especially in the case of conditional independence. In our teaching, we use the network in
Figure 1, which has a clear causal interpretation: all the variables are boolean, and for each link
X → Y the finding +x, i.e., the presence of X , increases the probability of +y, except in the case
of vaccination, +v, which decreases the probability of the second disease, +d2.

We begin by explaining that in this model the two viruses, VA and VB , are supposed to be
causally and probabilistically independent because there is no link between them and they have
no common ancestor. We can check it by introducing a finding for virus A and observing that
the probability of VB does not change (cf. Eq. 2); for example, P (+vB|+vA) = P (+vB|¬vA) =
P (+vB) = 0.01, as shown in Figure 1. In contrast, we can see that the variables VA and D1

are correlated by introducing evidence about the one and observing that probability of the other
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Figure 1: A Bayesian network for the differential diagnosis of two hypothetical diseases. In this
model VA and VB are a priori independent. We can check it by introducing evidence
about VA and observing that the probability of VB , represented by horizontal colored
bars, does not change. The same holds for the 5 variables at the right of F . In contrast,
the 4 descendants of VA do depend on the evidence for this variable.

changes; for example, in Figure 1 we observe that P (+d1|+vA) = 0.9009 > P (+d1) = 0.0268 >
P (+d1 | ¬vA) = 0.009.

In order to illustrate the concept of conditional independence, we first show that S and F are
correlated by introducing evidence on S and seeing that the probability of F changes. However, if
we first introduce evidence aboutD1, which plays the role of the conditioning variable, the evidence
about S does not alter the probability of F , as we can observe in Figure 2, which shows that F and
S, in spite of being correlated a priori, are conditionally independent given D1. Our students easily
understand the correlation between fever and the sign is due to a common cause, and when we know
with certainty whether this cause is present or absent, the correlation disappears. OpenMarkov
confirms that our intuitive understanding of causation leads to the numerical results we expected.

3.1.2 D-SEPARATION

In Section 2.2 we have introduced the definition of d-separation based on the concept of active
paths. If we leave the students just with this mathematical definition, they are absolutely unable to
understand the rationale behind it—we would also be! In particular, it is difficult to understand why
if the arrows that connect a node W with its two neighbors converge in W then this node or some
of its descendants must be in Z to make this path active, while if the arrows do not converge in W
then it is the opposite, i.e., W cannot be in Z.

In order to solve this puzzle, we explain that in this context Z represents a set of observed
variables. We then analyze how the definition of d-separation applies when the path containing
just one link; in this case there is no node between X and Y , so the path is active, by definition.

Teaching Bayesian networks with OpenMarkov
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Figure 2: In this network VA and VB are a priori independent. We can check it by introducing
evidence about VA and observing that the probability of VB does not change. The same
holds for the 5 variables at the left of F . In contrast, the descendants of VA do depend on
the evidence for this variable.

We then consider a path consisting of two links, sometimes called a trail (Koller and Friedman,
2009), which can be of three types: divergent, convergent, and sequential. A trail is divergent
when both links depart from the node in the middle; for example, S ← D1 → F . When there
is no evidence, i.e., when Z = ∅, the path is active and therefore ¬IG(S, F | ∅), which allows
S and F to be correlated;1 we can check that they are in fact correlated by introducing evidence
for one of them. In contrast, if we have a finding for D1, then Z = {D1}, and IG(S, F | {D1})
implies IP (S, F | {D1}), as we have seen in the previous subsection (cf. Fig. 2). The behavior
of a sequential trail is similar; for example, the path VA → D1 → S is active when there is no
finding for D1, because ¬IG(VA, S | ∅) of d-separation, but any finding about D1 blocks this path:
IG(VA, S | {D1}). So the causal interpretation of this path agrees with the properties of dependence
and independence that derive from the definition of d-separation.

Let us consider now a convergent trail, such as VA → D1 ← VB . We can check that it is inactive
when Z = ∅ by introducing evidence for VA and observing that the probability of VB , as we did in
Figure 1, which is quite intuitive, because there is no common cause for these variables. In contrast,
if we introduce first evidence about D1, then this trail becomes active, ¬IG(VA, VB | {D1}); we
can observe it by introducing evidence about VA and observing that the probability of VB changes.
In particular, P (+vB | +d1,+vA) < P (+vB | +d1) < P (+vB | +d1,¬vA). This also agrees with
the causal interpretation of the BN, because when a patient has the first disease, we suspect that
the cause is virus A or virus B; if additional evidence (for example, the result of a test) leads us
to discarding virus A, we then suspect that the cause of the disease is virus B, but if the presence
of A is confirmed, of our suspicion of B decreases. Put another way, VA and VB are a priori
independent, but the finding +d1 introduces a negative correlation between them. This phenomenon,
called explaining away (Pearl, 1988), is the most typical case of intercausal reasoning; in particular,
it is a property of the noisy-OR model (Pearl, 1988; Dı́ez and Druzdzel, 2006). (In this network we
have a noisy OR at D1 and another one at F .)

1. We say “allows S and F to be correlated” instead of “are correlated” because the separation in the graph implies
probabilistic independence, but the reverse is not true.

Francisco Javier Díez, Iago París, Jorge Pérez-Martín, Manuel Arias
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We can also observe that the convergent trail VA → D1 ← VB is not only activated byD1 itself,
but also by any of its descendants. In fact, the explaining-away phenomenon also occurs for +s and
+f , because either of these findings makes us suspect the presence of at least one of the viruses,
thus establishing a negative correlation between VA and VB . In contrast, D1 can block the divergent
trail S ← D1 → F , but the ancestors of D1 cannot: ¬IG(S, F | {VA, VB}). We can check by
first introducing evidence about VA and/or VB and then observing that S and F are still correlated.
This also agrees with our intuitive notion of causality because in this model both viruses increase
the probability of +d1 but none of them confirms definitely its presence; so +s further increases the
probability of +d1 and, consequently, that of +f .

3.1.3 MARKOV PROPERTY AND MARKOV BLANKETS

As we saw in Section 2.2, the Markov property means that every node is conditionally independent
of its non-descendants given its parents. We can use again the network in Figure 1 to check that this
property holds for every node; in particular, a node having no parents is a priori independent of its
non-descendants.

Similarly, we can use our example network to illustrate the concept of Markov blanket, which
denotes a set of nodes that surround a node making it conditionally independent of the other vari-
ables in the network (Pearl, 1988). Intuitively, the set of parents and children of a node D1 form
a Markov blanket for it. However we can see that this is not the case: if we introduce evidence
for VA, VB , S, and F , we can see that D1 is not yet separated from all the other nodes in the net-
work; in fact, every node in {V,D2, A,X,E} is correlated with D1 because F has activated the
trail D1 → F ← D2. Therefore, the Markov blanket of a node must include not only its parents
and children, but also its children’s parents.

3.1.4 THE BACK-DOOR PATH IN CAUSAL MODELS

One of the most difficult tasks in observational studies is to infer causal relations. Typically, when
there is an unobserved common cause U of two variablesX and Y , one might erroneously conclude
that X is a cause of Y or vice versa; in this context, U is called a confounder. A randomized
controlled trial that manipulates X and observes Y can avoid the confusion, but in many cases it is
not possible to conduct that experiment due to temporal, budgetary, or ethical constraints, and even
when possible, the analysis of the underlying causal relations is not always trivial. For this reason
Pearl (2000) proposed using BNs as a tool for the analysis. The following example illustrates how
intuition can be wrong in an apparently simple case.

Let us assume that an epidemiologist has observed, by means of randomized clinical trials, that
X is a cause of Y , and Y is a cause of Z. In order to gain more insight about the underlying causal
mechanisms, he re-examines his database, thinking that IP (X,Z | Y ) will imply that the influence
of X on Z is mediated only by Y , while ¬IP (X,Z | Y ) will prove that X is able to cause Z by
means of an alternative causal mechanism. This reasoning seems very intuitive, but is wrong.

We can explain it using the causal network in Figure 3, in which the only causal path from X to
Z passes through Y ; U is an observed cause of both Y and Z. We can check that P (+z|+y,+x) >
P (+z|+y,¬x), i.e., ¬IP (X,Z | Y ). However, this correlation between X and Z (given Y ) is not
due to a causal mechanism other than that mediated by Y . The reason for the confusion is that con-
ditioning on Y unwillingly opens a back-door path (Pearl, 2000) responsible for a spurious—i.e.,

Teaching Bayesian networks with OpenMarkov
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non-causal—correlation between X and Z even when conditioning on Y (rather, due to the condi-
tioning on Y , because previously the back-door path was not active).

Figure 3: Illustration of the back-door path. In this network the only causal path from X to Z
passes through Y . However, when conditioning on Y we see that ¬IP (X,Z | Y ), which
might lead to the wrong conclusion that there is another causal mechanism from X to Z.

3.2 Inference algorithms

Inference algorithms can be used to propagate evidence in BNs, i.e., to compute the posterior prob-
ability of some variables. In addition to teaching our students the most common algorithms, namely
variable elimination and clustering, we also explain other algorithms that may interesting for differ-
ent reasons, discussed in Section 4. Using again the BN in Figure 1, we show here how to compute
the probability of the first disease for a patient with fever and the sign, who was not vaccinated, i.e.,
P (+d1|+f,+s,¬v), applying two stochastic algorithms and one exact method.

3.2.1 STOCHASTIC ALGORITHMS

OpenMarkov currently implements two stochastic algorithms: logic sampling (Henrion, 1988) and
likelihood weighting (Fung and Chang, 1990). Both of them begin by sampling a value for each
node without parents, in accordance with its prior distribution, and then proceed in topological order
(i.e., downwards) sampling each other node in accordance with the probability distribution for the
configuration of its parents. This way, each iteration of the algorithm obtains a sample, which is a
configuration of all the nodes. OpenMarkov is able to store these configurations in a spreadsheet
and compute some statistics, including the posterior probability of each variable.

Figure 4 shows the result of evaluating the network in Figure 1 with the evidence {+f,+s,¬v}.
In logic sampling (left side), the variables have been sampled in the topological order {VA, VB, D1,
V,D2, F, S,A,X,E}. The 10,000 configurations obtained are stored in the “Samples” sheet, with a
sample per row and a variable per column; those compatible with the evidence are colored in green
and those incompatible in red. The tab “General stats” shows that only 37 samples are compatible,
a clear indication of the inefficiency of this algorithm.

For each variable, the spreadsheet shows the number of samples in which each state has ap-
peared. The sum for all the states of a variable is the total number of samples, obviously. It also

Francisco Javier Díez, Iago París, Jorge Pérez-Martín, Manuel Arias
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Figure 4: Output of the stochastic algorithms logic sampling (left) and likelihood weighting (right).
The latter only samples the variables that do not make part of the evidence.

shows the posterior probability, which is not proportional to the number of occurrences of the state
because many samples have been rejected. In particular, the probability for a state compatible with
(i.e., included in) the evidence is 1, provided that there is at least one valid sample.

Figure 4 (right side) shows the output of the likelihood weighting algorithm, which only samples
the variables that do not make part of the evidence. The first difference we observe is that now the
number of non-null samples is the same as the total number of samples, because all the samples are
valid. The weight of each sample is between 0 and 1, as we can see in the “Samples” sheet. As
a consequence, the total weight for this network and this evidence is 188.15, much higher than the
value of 37 obtained for logic sampling (because that algorithm only obtained 37 valid samples, each
with a weight of 1), and this in turn leads to more accurate estimates of the posterior probabilities.

Teaching Bayesian networks with OpenMarkov
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3.2.2 ARC REVERSAL

Arc reversal was initially designed for transforming influence diagrams into decision trees (Howard
and Matheson, 1984). Later Olmsted (1983) designed an algorithm that iteratively removes the
nodes from the influence diagram, one by one, until only the utility node remains—see also (Shachter,
1986). This basic idea can also be applied to computing the posterior probability of interest X in
a BN by eliminating all the nodes that are neither the variable of interest nor evidence variables. A
barren node (i.e., one without children) can be deleted directly; a node having children can be made
barren by inverting its outgoing links. In the final step, the arcs outgoing from X are inverted and
then the conditional probability table for this node contains P (x | e), the probability of interest.

Version 0.3 of OpenMarkov’s GUI will offer not only the possibility of deleting a node, as in any
other tool, but also an option for inverting a link X → Y when both P (x|pa(X)) and P (y|pa(Y ))
are in the form of probability tables.

As an example, we can apply this method to compute in the GUI P (+d1|+f,+s,¬v), the same
posterior probability that we estimated with the two stochastic algorithms. First of all, we remove
the barren nodes, X and E, which converts A into a barren node, ready to be deleted. In order to
eliminate VA, we invert the link VA → D1. Then OpenMarkov adds a link VB → VA (because VB
is a parent of D1) and computes the new conditional probabilities for VA and D1 as follows:

P (d1 | vB) =
∑

vA

P (vA, d1 | vB) =
∑

vA

P (vA) · P (d1 | vA, vB) ,

P (vA | vb, d1) = P (vA, d1 | vB)/P (d1 | vB) .

Then VA is a barren node, which we can deleted. We then invert the link VB → D1, which adds
no link because none of these nodes has other parents; OpenMarkov computes the new conditional
probabilities, P (d1) and P (vB|d1). We then delete VB . The last node to be eliminated is D2, which
has one child, F . When we ask OpenMarkov to invert the arc D2 → F , it adds the links D1 → D2

and V → F and computes the new conditional probabilities. After removing D2 we obtain a BN
with three links: D1 → S, D1 → F , and V → F . Inverting the first one does not add any new link,
but the reversal of D1 → F adds the links S → F and V → D1. The conditional probability table
for D1 is P (d1|f, s, v), in which we can observe that P (+d1|+f,+s,¬v) = 0.9707, the same value
that OpenMarkov obtains with variable elimination or clustering.

3.3 Learning Bayesian networks

BNs can be built from human knowledge, from data, or from a combination of both. OpenMarkov
implements the two basic algorithms for learning BNs from data: search-and-score (Cooper and
Herskovits, 1992) and PC (Spirtes and Glymour, 1991). Other tools offer many more algorithms,
but the advantage of OpenMarkov is the possibility of interactive learning: the GUI shows a list of
the edit (operations) it is ready to perform, with a motivation for each, so that the user can observe
how the algorithm proceeds, step by step, and either accept the next operation proposed by the
algorithm, or select another one from the list, or do a different edit at the GUI.

The search-and-score algorithm, also called “hill climbing”, departs from a network with a node
for each variable in the data, and no link. The possible edits are adding a directed link, or deleting or
inverting one of those already present in the network. This process is guided by a metric chosen by
the user. Currently OpenMarkov offers six well-known metrics: BD, Bayesian, K2, entropy, AIC,
and MDLM. When learning the network, it selects the edits compatible with the restrictions of the
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network (for example, a BN cannot have cycles) and ranks them according to their scores. This way,
a student can see, for example, that when the network has no link yet, the metric K2 usually assigns
different scores to the links X → Y and Y → X , even though the networks resulting represent
exactly the same probability distribution, which is an unsatisfactory property of this metric. It is
also possible to see how the addition of a link usually changes scores for the addition, removal, or
reversal of nearby links.

In contrast the PC algorithm departs from a fully connected undirected graph and removes the
links one by one depending on the conditional independencies found in the database. For each link
X–Y , OpenMarkov performs a statistical test that returns the p-value for the hypothesis that X
and Y are a priori independent; if p is below a certain threshold, α, called the significance level,
the link is kept; otherwise, it is removed. It then tests, for each pair of variables, whether they are
independent given a third variable, and then given a pair of other variables, and so on. In each of
these steps the GUI shows the user a list of the links that might be removed, together with the p and
the conditioning variables for it. This way, the user can not only see the removals that the algorithm
is considering, but also the motivation for each one. Finally, the algorithm assigns a direction to
each link.

The tutorial of OpenMarkov, available at www.openmarkov.org/docs/tutorial, ex-
plains in detail the options it offers for learning BNs, either automatically or interactively.

4. Discussion

Some networks that required stochastic evaluations in the past can now be solved with exact al-
gorithms, which are much faster in general; for example, the CPCS network can now be solved
in less than 0.05 seconds with a personal computer (Dı́ez and Galán, 2003). However, stochastic
simulation can evaluate networks containing numeric variables, and for this reason it is still worth
studying the basic algorithms.

Arc reversal is not the most efficient method for evaluating BNs—variable elimination is slightly
faster and occupies the same amount of memory, and clustering is much faster for multiple queries
at the cost of needing more memory. However, it is still one of the best algorithms for evaluating
influence diagrams, mainly because it usually finds better elimination orderings than variable elimi-
nation and clustering (Luque and Dı́ez, 2010). For this reason we teach our students this algorithm,
first for BNs and then for influence diagrams.

With respect to learning BNs, OpenMarkov only implements the two basic algorithms and six
metrics, but it has been carefully designed so that other researchers can add new methods and
integrate them in the GUI for interactive learning.

Additionally, OpenMarkov offers the important advantage of being open-source, which means
that the students with some knowledge of Java can inspect the implementation of the algorithms. For
example, in the abstract class StochasticPropagation.java the students can find the data structures
and methods common to the two algorithms discussed in this paper, while the classes that extend it,
namely LogicSampling.java and LikelihoodWeighting.java, implement the aspects in which the
algorithms differ.

Furthermore, advanced students can add new features to OpenMarkov—see for example (Li
et al., 2018). In fact, a significant part of OpenMarkov’s code has been written by our undergraduate,
master, and PhD students.

Teaching Bayesian networks with OpenMarkov
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5. Conclusion and future work

The facilities that OpenMarkov offers for teaching BNs are based on three features that, to our
knowledge, are not available in any other tool: showing several probability bars simultaneously for
different evidence cases, storing in a spreadsheet the samples generated by stochastic algorithms,
and learning BNs interactively. With them we have been able to explain our students in an intuitive
way some concepts related with conditional (in)dependence that we found difficult to explain when
we did not have them. The possibility of learning BNs interactively using the two basic algorithms
and several metrics for search-and-score has allowed our students to “play” with different databases
and observe how the methods explained in the theory work in practice. The inversion of links at
the GUI, which shows the new probability tables and the links added, may help understand the
arc-reversal algorithm. Given that nowadays PGMs make part of the computer science curriculum
in every university, we expect that many scholars around the world may consider OpenMarkov a
useful tool for teaching them.

In the future it would be useful to implement in OpenMarkov new algorithms for inference and
learning and new explanation facilities. We will extend this paper by describing some features that
help us teach not only BNs but also influence diagrams using this tool.
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Abstract
Depending on the interpretation of the type of edges, a chain graph can represent different rela-
tions between variables and thereby independence models. Three interpretations, known by the
acronyms LWF, MVR, and AMP, are prevalent. Multivariate regression chain graphs (MVR CGs)
were introduced by Cox and Wermuth in 1993. We review Markov properties for MVR chain
graphs and propose an alternative local Markov property for them. Except for pairwise Markov
properties, we show that for MVR chain graphs all Markov properties in the literature are equiv-
alent for semi-graphoids. We derive a new factorization formula for MVR chain graphs which is
more explicit than and different from the proposed factorizations for MVR chain graphs in the liter-
ature. Finally, we provide a summary table comparing different features of LWF, AMP, and MVR
chain graphs.

Keywords: multivariate regression chain graph; Markov property; graphical Markov models; fac-
torization of probability distributions; conditional independence; marginalization of causal latent
variable models; compositional graphoids.

1. Introduction

A probabilistic graphical model is a probabilistic model for which a graph represents the condi-
tional dependence structure between random variables. There are several classes of graphical mod-
els; Bayesian networks (BN), Markov networks, chain graphs, and ancestral graphs are commonly
used (Lauritzen, 1996; Richardson and Spirtes, 2002). Chain graphs, which admit both directed and
undirected edges, are a type of graphs in which there are no partially directed cycles. Chain graphs
were introduced by Lauritzen, Wermuth and Frydenberg (Frydenberg, 1990; Lauritzen and Wer-
muth, 1989) as a generalization of graphs based on undirected graphs and directed acyclic graphs
(DAGs). Later on Andersson, Madigan and Perlman introduced an alternative Markov property
for chain graphs (Andersson et al., 1996). In 1993 (Cox and Wermuth, 1993), Cox and Wermuth
introduced multivariate regression chain graphs (MVR CGs).

Acyclic directed mixed graphs (ADMGs), also known as semi-Markov(ian) (Pearl, 2009) mod-
els contain directed (→) and bi-directed (↔) edges subject to the restriction that there are no directed
cycles (Richardson, 2003; Evans and Richardson, 2014). An ADMG that has no partially directed
cycle is called a multivariate regression chain graph. In this paper we focus on the class of multi-
variate regression chain graphs and we discuss their Markov properties. The discussion preceding
Theorem 6 provides strong motivation for the importance of MVR CGs. In the first decade of the
21st century, several Markov property (global, pairwise, block recursive, and so on) were introduced
by authors and researchers (Richardson and Spirtes, 2002; Wermuth and Cox, 2004; Marchetti and
Lupparelli, 2008, 2011; Drton, 2009). Lauritzen, Wermuth, and Sadeghi (Sadeghi and Lauritzen,
2014; Sadeghi and Wermuth, 2016) proved that the global and (four) pairwise Markov properties of
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a MVR chain graph are equivalent for any independence model that is a compositional graphoid.
The major contributions of this paper may be summarized as follows:
• Proposed an alternative local Markov property for MVR chain graphs, which is equivalent with
other Markov properties in the literature for compositional semi-graphoids.
• Compared different proposed Markov properties for MVR chain graphs in the literature and con-
sidered conditions under which they are equivalent.
•Derived an alternative explicit factorization criterion for MVR chain graphs based on the proposed
factorization criterion for acyclic directed mixed graphs in (Evans and Richardson, 2014).

2. Definitions and Concepts

Definition 1 A vertex α is said to be an ancestor of a vertex β if either there is a directed path
α → . . . → β from α to β, or α = β. A vertex α is said to be anterior to a vertex β if
there is a path µ from α to β on which every edge is either of the form γ − δ, or γ → δ with
δ between γ and β, or α = β; that is, there are no edges γ ↔ δ and there are no edges
γ ← δ pointing toward α. Such a path is said to be an anterior path from α to β. We apply
these definitions disjunctively to sets: an(X) = {α|α is an ancestor of β for some β ∈ X}, and
ant(X) = {α|α is an anterior of β for some β ∈ X}. If necessary we specify the graph by a sub-
script, as in antG(X). The usage of the terms “ancestor” and “anterior” differs from Lauritzen
(Lauritzen, 1996), but follows Frydenberg (Frydenberg, 1990).

Definition 2 A mixed graph is a graph containing three types of edges, undirected (−), directed
(→) and bidirected (↔). An ancestral graph G is a mixed graph in which the following conditions
hold for all vertices α in G:
(i) if α and β are joined by an edge with an arrowhead at α, then α is not anterior to β.
(ii) there are no arrowheads present at a vertex which is an endpoint of an undirected edge.

Definition 3 A nonendpoint vertex ζ on a path is a collider on the path if the edges preceding and
succeeding ζ on the path have an arrowhead at ζ, that is,→ ζ ←, or ↔ ζ ↔, or ↔ ζ ←, or →
ζ ↔. A nonendpoint vertex ζ on a path which is not a collider is a noncollider on the path. A path
between vertices α and β in an ancestral graph G is said to be m-connecting given a set Z (possibly
empty), with α, β /∈ Z, if:
(i) every noncollider on the path is not in Z, and
(ii) every collider on the path is in antG(Z).

If there is no path m-connecting α and β given Z, then α and β are said to be m-separated
given Z. Sets X and Y are m-separated given Z, if for every pair α, β, with α ∈ X and β ∈ Y , α
and β are m-separated given Z (X, Y, and Z are disjoint sets; X, Y are nonempty). This criterion is
referred to as a global Markov property. We denote the independence model resulting from applying
the m-separation criterion to G, by =m(G). This is an extension of Pearl’s d-separation criterion to
mixed graphs in that in a DAG D, a path is d-connecting if and only if it is m-connecting.

Definition 4 Let GA denote the induced subgraph of G on the vertex set A, formed by removing
fromG all vertices that are not inA, and all edges that do not have both endpoints inA. Two vertices
x and y in a MVR chain graph G are said to be collider connected if there is a path from x to y in
G on which every non-endpoint vertex is a collider; such a path is called a collider path. (Note that
a single edge trivially forms a collider path, so if x and y are adjacent in a MVR chain graph then
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they are collider connected.) The augmented graph derived from G, denoted (G)a, is an undirected
graph with the same vertex set as G such that c−d in (G)a ⇔ c and d are collider connected in G.

Definition 5 Disjoint sets X,Y 6= Ø, and Z (Z may be empty) are said to be m∗-separated if X
and Y are separated by Z in (Gant(X∪Y ∪Z))a. Otherwise X and Y are said to be m∗-connected
given Z. The resulting independence model is denoted by =m∗(G).

Richardson and Spirtes in (Richardson and Spirtes, 2002, Theorem 3.18.) show that for an
ancestral graph G, =m(G) = =m∗(G). Note that in the case of ADMGs and MVR CGs, anterior
sets in definitions 3, 5 can be replaced by ancestor sets, because in both cases anterior sets and
ancestor sets are the same.

The absence of partially directed cycles in MVR CGs implies that the vertex set of a chain graph
can be partitioned into so-called chain components such that edges within a chain component are
bidirected whereas the edges between two chain components are directed and point in the same
direction. So, any chain graph yields a directed acyclic graph D of its chain components having T
as a node set and an edge T1 → T2 whenever there exists in the chain graph G at least one edge
u → v connecting a node u in T1 with a node v in T2. In this directed graph, we may define for
each T the set paD(T ) as the union of all the chain components that are parents of T in the directed
graph D. This concept is distinct from the usual notion of the parents paG(A) of a set of nodes A in
the chain graph, that is, the set of all the nodes w outside A such that w → v with v ∈ A (Marchetti
and Lupparelli, 2011). Given a chain graph G with chain components (T |T ∈ T ), we can always
define a strict total order ≺ of the chain components that is consistent with the partial order induced
by the chain graph, such that if T ≺ T ′ then T /∈ paD(T ′) (we draw T ′ to the right of T as in the
example of Figure 1). For each T , the set of all components preceding T is known and we may
define the cumulative set pre(T ) = ∪T≺T ′T ′ of nodes contained in the predecessors of component
T , which we sometimes call the past of T . The set pre(T ) captures the notion of all the potential
explanatory variables of the response variables within T (Marchetti and Lupparelli, 2011).

3. Markov Properties for MVR Chain Graphs

In this section, first, we show, formally, that MVR chain graphs are a subclass of the maximal an-
cestral graphs of Richardson and Spirtes (Richardson and Spirtes, 2002) that include only observed
and latent variables. Latent variables cause several complications (Colombo et al., 2012). First,
causal inference based on structural learning algorithms such as the PC algorithm (Spirtes et al.,
2000) may be incorrect. Second, if a distribution is faithful to a DAG, then the distribution obtained
by marginalizing out on some of the variables may not be faithful to any DAG on the observed
variables i.e., the space of DAGs is not closed under marginalization. These problems can be solved
by exploiting MVR chain graphs. This motivates the development of studies on MVR CGs.

Theorem 6 If G is a MVR chain graph, then G is an ancestral graph.

Proof Obviously, every MVR chain graph is a mixed graph without undirected edges. So, it is
enough to show that condition (i) in Definition 2 is satisfied. For this purpose, consider that α and β
are joined by an edge with an arrowhead at α in MVR chain graph G. Two cases are possible. First,
if α ↔ β is an edge in G, by definition of a MVR chain graph, both of them belong to the same
chain component. Since all edges on a path between two nodes of a chain component are bidirected,
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then by definition α cannot be an anterior of β. Second, if α ← β is an edge in G, by definition of
a MVR chain graph, α and β belong to two different components (β is in a chain component that is
to the right side of the chain component that contains α). We know that all directed edges in a MVR
chain graph are arrows pointing from right to left, so there is no path from α to β in G i.e. α cannot
be an anterior of β in this case. We have shown that α cannot be an anterior of β in both cases,
and therefore condition (i) in Definition 2 is satisfied. In other words, every MVR chain graph is an
ancestral graph.

The following result is often mentioned in the literature (Wermuth and Sadeghi, 2012; Peña,
2015; Sadeghi and Lauritzen, 2014; Sonntag, 2014), but we know of no published proof.

Corollary 7 Every MVR chain graph has the same independence model as a DAG under marginal-
ization.

Proof From Theorem 6, we know that every MVR chain graph is an ancestral graph. The result
follows directly from (Richardson and Spirtes, 2002, Theorem 6.3).

3.1 Global and Pairwise Markov Properties

The following properties have been defined for conditional independences of probability distribu-
tions. Let A,B,C and D be disjoint subsets of VG, where C may be the empty set.
1. Symmetry: A⊥⊥ B ⇒ B⊥⊥ A;
2. Decomposition: A⊥⊥ BD|C ⇒ (A⊥⊥ B|C and A⊥⊥ D|C);
3. Weak union: A⊥⊥ BD|C ⇒ (A⊥⊥ B|DC and A⊥⊥ D|BC);
4. Contraction: (A⊥⊥ B|DC and A⊥⊥ D|C)⇔ A⊥⊥ BD|C;
5. Intersection: (A⊥⊥ B|DC and A⊥⊥ D|BC)⇒ A⊥⊥ BD|C;
6. Composition: (A⊥⊥ B|C and A⊥⊥ D|C)⇒ A⊥⊥ BD|C.

An independence model is a semi-graphoid if it satisfies the first four independence properties
listed above. Note that every probability distribution p satisfies the semi-graphoid properties (Stu-
dený, 1989). If a semi-graphoid further satisfies the intersection property, we say it is a graphoid
(Pearl and Paz, 1987; Studený, 2005, 1989). A compositional graphoid further satisfies the compo-
sition property (Sadeghi and Wermuth, 2016). If a semi-graphoid further satisfies the composition
property, we say it is a compositional semi-graphoid.

For a node i in the connected component T , its past, denoted by pst(i), consists of all nodes
in components having a higher order than T . To define pairwise Markov properties for MVR CGs,
we use the following notation for parents, anteriors and the past of node pair i, j: paG(i, j) =
paG(i)∪paG(j)\{i, j}, ant(i, j) = ant(i)∪ant(j)\{i, j}, and pst(i, j) = pst(i)∪pst(j)\{i, j}.
The distribution P of (Xn)n∈V satisfies a pairwise Markov property (Pm), for m = 1, 2, 3, 4, with
respect to MVR CG(G) if for every uncoupled pair of nodes i and j (i.e., there is no directed or
bidirected edge between i and j):
(P1): i⊥⊥ j|pst(i, j) , (P2): i⊥⊥ j|ant(i, j) , (P3): i⊥⊥ j|paG(i, j) , and (P4): i⊥⊥ j|paG(i)
if i ≺ j.

Notice that in (P4), paG(i) may be replaced by paG(j) whenever the two nodes are in the same
connected component. Sadeghi and Wermuth in (Sadeghi and Wermuth, 2016) proved that all of
above mentioned pairwise Markov properties are equivalent for compositional graphoids. Also,
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they show that each one of the above listed pairwise Markov properties is equivalent to the global
Markov properties in Definitions 3, 5 (Sadeghi and Wermuth, 2016, Corollary 1). The necessity of
intersection and composition properties follows from (Sadeghi and Lauritzen, 2014, Section 6.3).

3.2 Block-recursive, Multivariate Regression (MR), and Ordered Local Markov Properties

Definition 8 Given a chain graph G, the set NbG(A) is the union of A itself and the set of nodes
w that are neighbors of A, that is, coupled by a bi-directed edge to some node v in A. Moreover,
the set of non-descendants ndD(T ) of a chain component T , is the union of all components T ′ such
that there is no directed path from T to T ′ in the directed graph of chain components D.

Definition 9 (multivariate regression (MR) Markov property for MVR CGs (Marchetti and Lup-
parelli, 2011)) Let G be a chain graph with chain components (T |T ∈ T ). A joint distribution P
of the random vector X obeys multivariate regression (MR) Markov property with respect to G if it
satisfies the following independences. For all T ∈ T and for all A ⊆ T :
(MR1) if A is connected:A⊥⊥ [pre(T ) \ paG(A)]|paG(A).
(MR2) if A is disconnected with connected components A1, . . . , Ar: A1⊥⊥ . . .⊥⊥ Ar|pre(T ).

Remark 10 (Marchetti and Lupparelli, 2011, Remark 2) One immediate consequence of Definition
9 is that if the probability density p(x) is strictly positive, then it factorizes according to the directed
acyclic graph of the chain components: p(x) =

∏
T∈T p(xT |xpaD(T )).

Definition 11 (Chain graph Markov property of type IV (Drton, 2009)) Let G be a chain graph with
chain components (T |T ∈ T ) and directed acyclic graph D of components. The joint probability
distribution of X obeys the block-recursive Markov property of type IV if it satisfies the following
independencies:
(IV0): T ⊥⊥ [ndD(T ) \ paD(T )]|paD(T ), for all T ∈ T ;
(IV1): A⊥⊥ [paD(T ) \ paG(A)]|paG(A), for all T ∈ T , and for all A ⊆ T ;
(IV2): A⊥⊥ [T \NbG(A)]|paD(T ), for all T ∈ T , and for all connected subsets A ⊆ T.

The following example shows that independence models, in general, resulting from Definitions 9,
11 are different.

Example 1 Consider the MVR chain graph G in Figure 1. For the connected set A = {1, 2} the

Figure 1: A MVR CG with chain components: T = {T1 = {1, 2, 3, 4}, T2 = {5, 6}, T3 = {7}}.

condition (MR1) implies that 1, 2⊥⊥ 6, 7|5 while the condition (IV2) implies that 1, 2⊥⊥ 6|5, which
is not implied directly by (MR1) and (MR2). Also, the condition (MR2) implies that 1⊥⊥ 3, 4|5, 6, 7
while the condition (IV2) implies that 1 ⊥⊥ 3, 4|5, 6, which is not implied directly by (MR1) and
(MR2).
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Theorem 1 in (Marchetti and Lupparelli, 2011) states that for a given chain graph G, the multi-
variate regression Markov property is equivalent to the block-recursive Markov property of type IV.
Also, Drton in (Drton, 2009, Section 7 Discussion) claims that (without proof) the block-recursive
Markov property of type IV can be shown to be equivalent to the global Markov property proposed
in (Richardson and Spirtes, 2002; Richardson, 2003).

Now, we introduce a(n ordered) local Markov property for ADMGs proposed by Richardson in
(Richardson, 2003), which is an extension of the local well-numbering Markov property for DAGs
introduced in (Lauritzen et al., 1990). For this purpose, we need to consider the following definitions
and notations:

Definition 12 For a given acyclic directed mixed graph (ADMG) G, the induced bi-directed graph
(G)↔ is the graph formed by removing all directed edges from G. The district (aka c-component)
for a vertex x in G is the connected component of x in (G)↔, or equivalently

disG(x) = {y|y ↔ . . .↔ x in G, or x = y}.
As usual we apply the definition disjunctively to sets: disA(B) = ∪x∈BdisA(x). A set C is path-
connected in (G)↔ if every pair of vertices in C are connected via a path in (G)↔; equivalently,
every vertex in C has the same district in G.

Definition 13 In an ADMG, a set A is said to be ancestrally closed if x→ . . .→ a in G with a ∈ A
implies that x ∈ A. The set of ancestrally closed sets is defined as follows:

A(G) = {A|anG(A) = A}.
If A is an ancestrally closed set in an ADMG (G), and x is a vertex in A that has no children in A
then we define the Markov blanket of a vertex x with respect to the induced subgraph on A as

mb(x,A) = paG(disGA
(x)) ∪ (disGA

(x) \ {x}),
where disGA

is the district of x in the induced subgraph GA.

Definition 14 LetG be an acyclic directed mixed graph. Specify a total ordering (≺) on the vertices
of G, such that x ≺ y ⇒ y 6∈ an(x); such an ordering is said to be consistent with G. Define
preG,≺(x) = {v|v ≺ x or v = x}.
Definition 15 (Ordered local Markov property) Let G be an acyclic directed mixed graph. An
independence model= over the node set ofG satisfies the ordered local Markov property forG, with
respect to the ordering ≺, if for any x, and ancestrally closed set A such that x ∈ A ⊆ preG,≺(x),

{x} ⊥⊥ [A \ (mb(x,A) ∪ {x})]|mb(x,A).

Since MVR chain graphs are a subclass of ADMGs, the ordered local Markov property in Defi-
nition 15 can be used as a local Markov property for MVR chain graphs.

Theorem 16 Let G be a MVR chain graph. For an independence model = over the node set of G,
the following conditions are equivalent:
(i) = satisfies the global Markov property w.r.t. G in Definition 3;
(ii) = satisfies the global Markov property w.r.t. G in Definition 5;
(iii) = satisfies the block recursive Markov property w.r.t. G in Definition 11;
(iv) = satisfies the MR Markov property w.r.t. G in Definition 9.
(v) = satisfies the ordered local Markov property w.r.t. G in Definition 15.

On the Properties of MVR Chain Graphs

18



Proof The proof of this theorem is omitted to save space; it is contained in the supplementary ma-
terial (Javidian and Valtorta, 2018a).

3.3 An Alternative Local Markov Property for MVR Chain Graphs

In this subsection we formulate an alternative local Markov property for MVR chain graphs. This
property is different from and much more concise than the ordered Markov property proposed in
(Richardson, 2003). The new local Markov property can be used to parameterize distributions
efficiently when MVR chain graphs are learned from data, as done, for example, in (Javidian and
Valtorta, 2018b, Lemma 9). We show that this local Markov property is equivalent to the global and
ordered local Markov property for MVR chain graphs (for compositional graphoids).

Definition 17 If there is a bidirected edge between vertices u and v, u and v are said to be neigh-
bors. The boundary bd(u) of a vertex u is the set of vertices in V \ {u} that are parents or
neighbors of vertex u. The descendants of vertex u are de(u) = {v|u is an ancestor of v}. The
non-descendants of vertex u are nd(u) = V \ (de(u) ∪ {u}).

Definition 18 The local Markov property for a MVR chain graph G with vertex set V holds if, for
every v ∈ V : v ⊥⊥ [nd(v) \ bd(v)]|paG(v).

Remark 19 In DAGs, bd(v) = paG(v), and the local Markov property given above reduces to the
directed local Markov property introduced by Lauritzen et al. in (Lauritzen et al., 1990). Also, in
covariance graphs the local Markov property given above reduces to the dual local Markov property
introduced by Kauermann in (Kauermann, 1996, Definition 2.1).

Theorem 20 Let G be a MVR chain graph. If an independence model = over the node set of G is
a compositional semi-graphoid, then = satisfies the alternative local Markov property w.r.t. G in
Definition 18 if and only if it satisfies the global Markov property w.r.t. G in Definition 5.

Proof (Global ⇒ Local): Let X = {v}, Y = nd(v) \ bd(v), and Z = paG(v). So, an(X ∪ Y ∪
S) = v∪ (nd(v)\ bd(v))∪paG(v) is an ancestor set, and paG(v) separates v from nd(v)\ bd(v) in
(Gv∪(nd(v)\bd(v))∪paG(v))

a; this shows that the global Markov property in Definition 5 implies the
local Markov property in Definition 18.
(Local⇒MR): We prove this by considering the following two cases:
Case 1): Let A ⊆ T is connected. Using the alternative local Markov property for each x ∈ A
implies that: {x} ⊥⊥ [nd(x)\bd(x)]|paG(x). Since (pre(T )\paG(A)) ⊆ (nd(x)\bd(x)), using the
decomposition and weak union property give: {x} ⊥⊥ (pre(T ) \ paG(A))|paG(A), for all x ∈ A.
Using the composition property leads to (MR1): A ⊥⊥ (pre(T ) \ paG(A))|paG(A).
Case 2): LetA ⊆ T is disconnected with connected componentsA1, . . . , Ar. For 1 ≤ i 6= j ≤ r we
have: {x} ⊥⊥ [nd(x) \ bd(x)]|paG(x), for all x ∈ Ai. Since [(pre(T ) \ paG(A))∪Aj ] ⊆ (nd(x) \
bd(x)), using the decomposition and weak union property give: {x} ⊥⊥ Aj |pre(T ), for all x ∈ Ai.
Using the composition property leads to (MR2): Ai ⊥⊥ Aj |pre(T ), for all 1 ≤ i 6= j ≤ r.
(MR⇒ Global): The result follows from Theorem 16.

The necessity of composition property in Theorem 20 follows from the fact that local and global
Markov properties for bi-directed graphs, which are a subclass of MVR CGs, are equivalent only
for compositional semi-graphoids (Kauermann, 1996, Proposiotion 2.2).
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4. An Alternative Factorization for MVR Chain Graphs

According to the definition of MVR chain graphs, it is obvious that they are a subclass of acyclic
directed mixed graphs (ADMGs). In this section, we derive an explicit factorization criterion for
MVR chain graphs based on the proposed factorization criterion for acyclic directed mixed graphs
in (Evans and Richardson, 2014). For this purpose, we need to consider the following definition and
notations:

Definition 21 An ordered pair of sets (H,T ) form the head and tail of a term associated with an
ADMG G if and only if all of the following hold:
1. H = barren(H), where barren(H) = {v ∈ H|de(v) ∩H = {v}}.
2. H contained within a single district of Gan(H).
3. T = tail(H) = (disan(H)(H) \H) ∪ pa(disan(H)(H)).

Evans and Richardson in (Evans and Richardson, 2014, Theorem 4.12) prove that a probability
distribution P obeys the global Markov property for an ADMG(G) if and only if for every A ∈
A(G),

p(XA) =
∏

H∈[A]G
p(XH |tail(H)), (1)

where [A]G denotes a partition of A into sets {H1, . . . ,Hk} ⊆ H(G) (for a graph G, the set
of heads is denoted by H(G)), defined with tail(H), as above. The following theorem provides
an alternative factorization criterion for MVR chain graphs based on the proposed factorization
criterion for acyclic directed mixed graphs in (Evans and Richardson, 2014).

Theorem 22 Let G be a MVR chain graph with chain components (T |T ∈ T ). If a probability
distribution P obeys the global Markov property for G then p(x) =

∏
T∈T p(xT |xpaG(T )).

Proof According to Theorem 4.12 in (Evans and Richardson, 2014), since G ∈ A(G), it is enough
to show that H(G) = {T |T ∈ T } and tail(T ) = paG(T ), where T ∈ T . In other words, it is
enough to show that for every T in T , (T, paG(T )) satisfies the three conditions in Definition 21.
1. Let x, y ∈ T and T ∈ T . Then y is not a descendant of x. Also, we know that x ∈ de(x), by
definition. Therefore, T = barren(T ).
2. Let T ∈ T , then from the definitions of a MVR chain graph and induced bi-directed graph, it is
obvious that T is a single connected component of the forest (Gan(T ))↔. So, T contained within a
single district of (Gan(T ))↔.
3. T ⊆ an(T ) by definition. So, ∀x ∈ T : disan(T )(x) = {y|y ↔ . . .↔ x in an(T ), or x = y} =
T . Therefore, disan(T )(T ) = T and disan(T )(T ) \ T = Ø. In other words, tail(T ) = paG(T ).

Example 2 Consider the MVR chain graph G in Example 1. Since [G]G = {{1, 2, 3, 4}{5, 6}{7}}
so, tail({1, 2, 3, 4}) = {5}, tail({5, 6}) = {7}, and tail({7}) = Ø. Therefore, based on Theorem
22 we have: p = p1234|5p56|7p7. However, the corresponding factorization of G based on the
formula in (Drton, 2009; Marchetti and Lupparelli, 2011) is: p = p1234|56p56|7p7.

The advantage of the new factorization is that it requires only graphical parents, rather than
parent components in each factor, resulting in smaller variable sets for each factor, and therefore
speeding up belief propagation.
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Type of chain
graph

Does it repre-
sent indepen-
dence model of
DAGs under
marginalization?

Global Markov
property

Factorization of p(x) Model selection
(structural
learning)

algorithm(s)
[constraint

based method]
MVR CGs: Cox
& Wermuth (Cox
and Wermuth,
1993, 1996;
Wermuth and
Cox, 2004),
Peña & Sonntag
(Peña, 2015;
Sonntag, 2014),
Sadeghi & Lau-
ritzen (Sadeghi
and Lauritzen,
2014), Drton
(type IV) (Drton,
2009), Marchetti
& Lupparelli
(Marchetti and
Lupparelli, 2008,
2011)

Yes (claimed
in (Cox and
Wermuth,
1996; Wermuth
and Sadeghi,
2012; Sadeghi
and Lauritzen,
2014; Sonntag,
2014), proved
in Corollary 7)

(1) X ⊥⊥ Y |Z
if X is separated
from Y by Z in
(Gant(X∪Y ∪Z))a

or (Gan(X∪Y ∪Z))a

(Richardson, 2003;
Richardson and
Spirtes, 2002).

(2) X ⊥⊥ Y |Z
if X is separated
from Y by Z in
(GAntec(X∪Y ∪Z))a.

(1) and (2) are
equivalent for
compositional
graphoids (see
supplementary
material).

(1) Theorem 22,
∏

T∈T
p(xT |xpa(T ))

(2)
∏

T∈T
p(xT |xpaD(T ))

where paD(T ) is the
union of all the chain
components that are par-
ents of T in the directed
graph D (Drton, 2009;
Marchetti and Lupparelli,
2011).

PC like al-
gorithm for
MVR CGs in
(Sonntag, 2014;
Sonntag and
Peña, 2012),
Decomposition-
based algorithm
for MVR CGs
in (Javidian
and Valtorta,
2018b).

LWF CGs (Fry-
denberg, 1990;
Lauritzen and
Wermuth, 1989),
Drton (type I)
(Drton, 2009)

No X ⊥⊥ Y |Z if
X is separated
from Y by Z in
(GAn(X∪Y ∪Z))m

(Lauritzen, 1996).

(Cowell et al., 1999; Lau-
ritzen and Richardson,
2002)

∏

τ∈T
p(xτ |xpa(τ)),

where p(xτ |xpa(τ)) =
Z−1(xpa(τ))

∏
c∈C φc(xc),

where C are the complete
sets in the moral graph
(τ ∪ pa(τ))m.

PC like al-
gorithm in
(Studený,
1997), LCD
algorithm in
(Ma et al.,
2008), CKES
algorithm in
(Peña et al.,
2014; Sonntag,
2014)

AMP CGs (An-
dersson et al.,
1996), Drton
(type II) (Drton,
2009)

No X ⊥⊥ Y |Z if X
is separated from
Y by Z in the
undirected graph
Aug[CG;X,Y, Z]
(Richardson,
1998).

∏
τ∈T p(xτ |xpa(τ)),

where no further factor-
ization similar to LWF
model appears to hold in
general (Andersson et al.,
1996). For the positive
distribution p see (Peña,
2018).

PC like algo-
rithm in (Peña,
2014)

Table 1: Properties of chain graphs under different interpretations
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Conclusion and Summary

Based on the interpretation of the type of edges in a chain graph, there are different conditional
independence structures among random variables in the corresponding probabilistic model. Other
than pairwise Markov properties, we showed that for MVR chain graphs all Markov properties in
the literature are equivalent for semi-graphoids. We proposed an alternative local Markov property
for MVR chain graphs, and we proved that it is equivalent with other Markov properties for compo-
sitional semi-graphoids. Also, we obtained an alternative formula for factorization of a MVR chain
graph. Table 1 summarizes some of the most important attributes of different types of common
interpretations of chain graphs.
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Abstract
Most applications of Bayesian networks focus on calculating posterior probabilities over variables
of interest given observations of other variables. Because not all observations are available at the
outset, one would like to know how future observations may lead to changes of these posterior
probabilities. For example, a probability of a disease in a patient with little or no symptoms or
test results is close to disease prevalence in general population. This probability can go up or
down, depending on the patient’s specifics. A user of a probabilistic decision support system might
want to know where this probability can go as more information becomes available. We propose
to address this problem by deriving variation intervals over posterior probabilities. Our method
involves simulation of future observations to calculate possible values of posterior probabilities.
Keywords: Bayesian networks, uncertainty, posterior probability, variation intervals, confidence
intervals, information gathering, simulation

Bayesian network (BN) Pearl (1988) is a modeling tool for a convenient representation of a
joint probability distribution over a set of variables. BNs have been used to model uncertainty about
events in many domains, such as machine diagnosis, medical diagnosis, risk analysis, and classifi-
cation. A BN is an acyclic directed graph, in which nodes represent variables and edges represent
direct dependencies between pairs of these variables. Each node is associated with a conditional
probability distribution, which in the discrete case is represented by a conditional probability ta-
ble (CPT). A BN model allows to calculate the posterior probability distribution over variables of
interest given a set of observations, where an observation is an assignment of a value to a variable.

The posterior probability distributions over variables of interest change as we gather observa-
tions about a case at hand. Each new observation introduces information that usually makes the
probability estimate more case-specific and, hence, more precise. A user applying the model may
want to know, how future observations will impact the model’s result. For example, a physician
investigating a case of a patient with a chest pain may consider running some clinical tests after
gathering information about patient’s medical history and listening to patient’s lungs. A question
of much interest is whether the probability of pneumonia can go up or down and by how much
as we obtain the results of the clinical tests. In other words, how will the posterior probability of
pneumonia change when we feed the model with more observations about the patient case at hand.

One way of representing the uncertainty about a calculated quantity (this is, in case of a BN
model, a posterior probability) is a confidence interval, which utilizes the probability distribution
over the predicted value. Given that a BN is a complete specification of the joint probability distri-
bution over its variables, we have all the necessary information to derive such intervals.

25



Most of the literature on uncertainty in results of Bayesian network inference focuses on the
impact of possible imprecision in parameters of the network. Such uncertainty can be captured
by means of error bars or uncertainty intervals (e.g., work by Donald and Mengersen (2014) or
Van Allen et al. (2008)). If the imprecision in parameters can be expressed by intervals, it can
be propagated over the model to derive uncertainty intervals over results (Fagiuoli and Zaffalon,
1998; Cano et al., 1993). Uncertainty over results has also been a focus of sensitivity analysis,
which amounts to studying the impact of small changes in individual model parameters on the
result. For example, Laskey (1995) describes the derivation of error bars for probability assessment.
Even though the question posed in this paper is useful and asked by users of probabilistic decision
support systems, we have not found any literature analyzing the uncertainty intervals for posterior
probabilities in anticipation of future observations.

In this paper, we present a method for deriving uncertainty (variation) intervals over posterior
probabilities due to unknown observations about the case. The starting point for our work is a BN
model, and we assume that both its structure and its parameters are correct. Because the distribu-
tion over possible values of posterior probabilities given different observations is not necessarily
parametric, we propose to use an empirical distribution. The number of possible combinations
of observations is typically too large to analyze. In such situation, we simulate the observations by
means of a stochastic sampling method based on posterior probability distributions over unobserved
variables.

The remainder of this paper is structured as follows. Section 1 introduces notation and necessary
definitions. Section 2 describes two simulation methods for deriving the variation intervals over
posterior probabilities. Section 3 demonstrates and compares these methods. Section 4 concludes
the paper with final remarks and discussion.

1. Definitions and notation

Throughout this paper, we will use capital letters, e.g., X , to denote random variables. Even though
random variables in BNs may be continuous, we focus on variables with finite numbers of outcomes.
Let Val(X) = {x1, . . . , xni} be a set of possible outcomes of a random variableX . An observation
of a variable X is an assignment of one of its possible outcomes X = xj , which we will shorten to
xj .

Let G(V,E) be an acyclic directed graph, where V is a set of vertices (nodes) and E is a set of
pairs (V,W ) representing directed edges between nodes V,W ∈ V. Let Pa(V ) be a set of nodes
that are immediate predecessors (parents) of V . Let Ch(V ) be a set of vertices that are immediate
successors (children) of V .

1.1 Bayesian network

A discrete Bayesian network (BN) is a pair (G,Θ), where G(V,E) consists of

• V = {V1, V2, . . . , Vn} represents a set of random variables, each with a finite set of mutually
exclusive states Val(Vi) and

• a set of edges E that jointly model the independencies among variables V;

Θ is a set of parameters {θvi,j |ck , vi,j ∈ Val(Vi) ∧ ck ∈ Val(Pa(Vi))}, which define conditional
probability distributions Pr(Vi|Pa(Vi)) for each Vi.

Variation Intervals for Posterior Probabilities in Bayesian Networks in Anticipation of Future Observations
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Figure 1: The ASIA Bayesian network (Lauritzen and Spiegelhalter, 1988).

Parameters θvi,•|• of the conditional probability distribution of a variable Vi can be organized
in a conditional probability table (CPT) that describes the probability distribution over Vi for all
combinations of assignments to Pa(Vi). Figure 1 shows the ASIA model (Lauritzen and Spiegel-
halter, 1988), which models the situation of a patient appearing in a clinic with dyspnea (shortness
of breath). It consists of eight discrete random variables representing disorders (Tuberculosis, Lung
Cancer, Bronchitis), historical data (Visit to Asia, Smoking), auxiliary variables (Tuberculosis or
Lung Cancer), symptoms (Dyspnea) and examinations that a physician can perform (X-Ray Re-
sult).

1.2 Targets, evidence, and Markov blankets

Let T ⊂ V be a set of variables of interest (targets). Let S ⊂ V be all observable phenomena
modeled by the BN, e.g., symptoms or patient history data in a medical decision support system. An
evidence set E is a set of observations (assignments) ({vi1,j1 , . . . , vik,jk}, where {Vi1 , . . . , Vik} =
SO ⊂ S is a set of variables with assignments in E). A scenario E∗ ⊃ E is an evidence set that
assigns outcomes to all variables in S. We will denote by SU the set of variables without associated
assignment in E i.e., SU = S \ SO. For example, in the ASIA model, variables Tuberculosis, Lung
Cancer and Bronchitis compose the set of target variables T. Variables Visit to Asia, X-Ray Result,
Dyspnea and Smoking belong to the set S of observable phenomena. If we consider a patient with
dyspnea, we have an evidence set consisting of one assignment E = {dyspnea = present}. Based
on this evidence set E, we can calculate the posterior probability of the patient having tuberculosis
Pr(Tuberculosis = present|E). Usually the term probabilistic inference refers to calculations of
posterior probabilities (Lauritzen and Spiegelhalter, 1988). While the method proposed in this paper
is general enough to apply to any calculated posterior probability in a Bayesian network, we focus
on the posterior marginal probabilities of single outcomes.

The Markov blanket of a variable Vi ∈ V is the set M(Vi) ⊂ V consisting of variables that are
parents Pa(Vi), children Ch(Vi), and parents of its children Pa(Ch(Vi)), i.e.,

M(Vi) = Pa(Vi) ∪ Ch(Vi) ∪ Pa(Ch(Vi)) .
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M(Vi) represents all variables such that, when observed, make Vi independent of the remainder
of the variables in the network. For example, in Figure 1, M(Smoking) = {Lung Cancer,
Bronchitis}, as variables Lung Cancer and Bronchitis make Smoking independent of the rest of
the network.

We can extend the definition of Markov blanket to sets of variables A ⊂ V. M(A) is a union
of Markov blankets M(Vi) of each variable Vi ∈ A excluding Vi, i.e.,

M(A) =


 ⋃

Vi∈A
M(Vi)


 \A .

If a Markov blanket M(Vi) contains a variable Vj , that is not observable (i.e., Vj ∈ V \ S), Vj
cannot be used to screen Vi from the rest of the network. We will extend the definition of Markov
blanket M(Vi) to an extended Markov blanket M∗(Vi), which we define as a set of observable vari-
ables that makes Vi independent from all the other observable variables. M∗(Vi) can be calculated
recursively in the following way. We start with a set C = {Vi}. We add all non-observable variables
Vj ∈M(C) ∩ (V \ S) to C. We repeat this procedure as long as M(C) ∩ (V \ S) 6= ∅, in which
case M∗(Vi) = M(C).

1.3 Variation intervals over future probabilities

We are interested in anticipated changes in the posterior probability of a target variable due to
possible future observations consistent with the evidence E at hand. Determining all possible future
observations would require analyzing all possible scenarios E∗ ⊃ E. Analyzing all these scenarios
for a large model may be daunting. For example, the HEPAR II model1 for supporting diagnosis of
liver disorders (Oniśko et al., 2001) consists of 70 variables of which 61 are observable. The size of
the complete set of scenarios for HEPAR II is over 3.78215× 1021.

In such a case, we can derive a sample of scenarios as described below. For a given evidence
set E, we obtain possible future observations by stochastic simulation, i.e., we draw outcomes
from the posterior probability distribution of each observable variable in S to obtain a possible
scenario of observations E∗. We can repeat the simulation to get a sample of possible scenarios
{E∗1, . . . ,E∗s, . . . ,E∗N}. If we calculate the posterior probabilities of an outcome of a target variable
given each scenario (e.g., Pr(Bronchitis = present|E∗s)), we will obtain a sample of possible
future probabilities of that outcome.

Figure 2 shows two histograms of posterior probability of assignments to two target vari-
ables in the HEPAR II model, Pr(Carcinoma = present|E∗) (a) and Pr(ChronicHepatitis =
active|E∗) (b). Both histograms were generated by sampling (as described above) with the evidence
set E = {HepatitisB Antigen = absent}.

Histograms such as those pictured in Figure 2 show typically a wide spread. For example,
the values in the histogram (b) cover the entire range (0, 1). It seems that reporting the range of
possible values is, therefore, quite useless. Because both histograms show some central tendency,
a trimmed range (for example, one showing 95% of all values) will be more informative. To this
effect, we can trim the extreme 2.5% of sampled values at each end. The precise cut-off points can
be interpreted as a numerical estimate of the 95% confidence interval over the current value of the
target probability calculated by the model in the light of future observations.

1. Available through several public Bayesian network repositories.
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(a) Pr(Carcinoma = present|E∗) (b) Pr(ChronicHepatitis = active|E∗)

Figure 2: Histograms representing samples of posterior probabilities values given one assignment
to a variable in HEPAR II model.

2. Calculation of the variation interval over future posterior probabilities

In this section, we formalize the procedure described in Section 1.3 by proposing two methods for
sampling the possible posterior probabilities in anticipation of future observations. The first method
(Algorithm 1) is based on an exhaustive instantiaton of all observable variables. We follow this
by an improved approach (Algorithm 2) that narrows down the number of sampled variables to the
extended Markov blanket of the target variable.

Algorithm 1 iterates through the set of all observable variables to assign a value to each unob-
served variable (line 4). To draw an outcome for a variable, it calculates the posterior probability
distribution over its outcomes given evidence (line 5). Then, it samples an outcome from the cal-
culated posterior probability distribution (line 6). Having outcomes assigned to all the observable
variables, the algorithm calculates the posterior probability of the pursued outcome of the target vari-
able, which amounts to one sample (lines 9-10). Based on the sample, we derive a variation interval
(empirical confidence interval) over the posterior probability of the pursued outcome (line 12).

Each calculation of the marginal posterior probability distribution of a variable involves a call to
a Bayesian network inference algorithm. Each derivation of the variation interval involves O(N ×
(|S| − |E|)) calls of the inference algorithm, where N describes the number of samples, |S| is the
number of observable variables, and |E| is the number of observations. Probabilistic inference is
worst-case NP-hard (Cooper, 1990) and even with the fastest algorithm available may turn out to be
too slow for interactive systems.

Generation of samples in Algorithm 1 can be improved by exploring independence between the
target variable and other variables conditional on the target variable’s Markov blanket. Because
in practice not all model variables are observable, we use the concept of the extended Markov
blanket, introduced in Section 1.2. Extended Markov blanket screens off the target variable given
a minimal set of those variables that are observable. This mitigates the problem of multiple calls
to Bayesian network inference algorithm by reducing the set of sampled variables to those in the
extended Markov blanket of the target variable.
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CISampleAllObservable
Input : BN (G,Θ), target variable Vt, target assignment vt,j , evidence E, unobserved

variables SU , number of samples N , confidence level 1− α
Output: Sample H of possible probabilities Pr(vt,j |E∗), variation interval (pL, pU )

1 H ← ∅
2 for k = 1, . . . , N do
3 E∗ ← E
4 foreach Vi ∈ SU do
5 Calculate Pr(Vi|E∗)
6 Draw vi,k ∼ Pr(Vi|E∗)
7 E∗ ← E∗ ∪ {vi,k}
8 end
9 Calculate Pr(Vt|E∗)

10 H ← (H,Pr(vt,j |E∗))
11 end
12 Construct 1− α variation interval (pL, pU ) using sample H
Algorithm 1: The algorithm for deriving the variation interval for posterior probability values
by sampling the space of assignments of all unobserved variables.

Algorithm 2 starts with determining the extended Markov blanket of the target variable (lines 1-
10). In particular, we create two sets to store unprocessed (A) and processed (AD) non-observable
variables. After initialization (lines 1-3), we are recursively collecting variables from Markov blan-
ket M(Vi) (lines 8-9) of a variable Vi ∈ A and moving Vi to the set AD (lines 6-7). The remainder
of the algorithm (lines 11-22) is similar to Algorithm 1, except for line 14, where we replaced SU

by M∗(Vt) \ SO. As a result, Algorithm 2 involves O(N × (|M∗(Vt) \ SO|)) calls to the inference
algorithm.

3. Evaluation of the proposed method

We applied our algorithms for calculating the 95% variation intervals over the posterior marginal
probability of a target outcome to three practical Bayesian network models described below.

HEPAR II is a Bayesian network model for diagnosis of liver disorders (Oniśko et al., 2001),
available from several public Bayesian network repositories. HEPAR II consists of 70 variables,
arranged in three groups: patient history and risk factors (18 variables), diseases (9 target variables),
and symptoms or test results (43 variables). HEPAR II’s graph models the causal structure of the
domain. For our tests, we picked various target variables from among the nine disease variables.

MORTALITY90D is a Bayesian network model for forecasting mortality of patients 90 days after
heart transplant (Kanwar et al., 2017). The structure of MORTALITY90D follows a Tree-augmented
Naive Bayes (TAN) model with one class variable representing mortality and 27 predictor variables.
The TAN structure forces two types of edges: connecting mortality with all predictor variables and
those forming a tree structure among all predictor variables. The Markov blanket of mortality
consists of all predictor variables.

CPCS179 is a Bayesian network model created from the knowledge base of the Computer-
based Patient Case Simulation (CPCS) system (Pradhan et al., 1994). CPCS179 consists of 179
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CISampleExtendedMarkovBlanket
Input : BN (G,Θ), target variable Vt, target assignment vt,j , evidence E, observable

variables S, number of samples N , confidence level 1− α
Output: Sample H of possible probabilities Pr(vt,j |E∗), variation interval (pL, pU )

1 M∗(Vt)←M(Vt) ∩ S
2 A←M(Vt) \ S
3 AD ← ∅
4 while A 6= ∅ do
5 pick any Vi from A
6 A← A \ {Vi}
7 AD ← AD ∪ {Vi}
8 A← A ∪ (M(Vi) \ (S ∪AD))
9 M∗(Vt)←M∗(Vt) ∪ (M(Vi) ∩ S)

10 end
11 H ← ∅
12 for k = 1, . . . , N do
13 E∗ ← E
14 foreach Vi ∈M∗(Vt) \ SO do
15 Calculate Pr(Vi|E∗)
16 Draw vi,k ∼ Pr(Vi|E∗)
17 E∗ ← E∗ ∪ {vi,k}
18 end
19 Calculate Pr(Vt|E∗)
20 H ← (H,Pr(vt,j |E∗))
21 end
22 Construct 1− α variation interval (pL, pU ) using sample H
Algorithm 2: The Algorithm for deriving the variation interval for posterior probability values
by instantiating variables of the extended Markov blanket of the target variable.
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variables connected by 239 edges and, similarly to HEPAR II, its graph follows the causal structure
of the domain. We treat this model as an example of a sizable Bayesian network. We chose the
following two variables as targets for our tests: Alcoholic Hepatitis, with one parent variable and 26
children variables, and Cholestasis, with one parent variable and 14 children variables. We treated
the remaining variables as observable.

3.1 Examples of the derived variation intervals

To demonstrate the usefulness and practical behavior of the variation intervals over future obser-
vations, we performed several simulations of a diagnostic process using the HEPAR II model (we
used a handful of real patient cases from a data set used for learning the parameters of the HEPAR II
model). For each target variable Vt and an evidence set Ei, we followed the following procedure:

1. From the set of unobserved variables, choose the variable that carries the most information
measured by cross-entropy for target Vt given already observed values. This gave us a realistic
order of observations during the diagnostic process: from the most to the least informative
evidence.

2. Enter the observation from the evidence set Ei for the chosen variable into the model.

3. Calculate the posterior marginal probability distributions of the target variables.

4. Derive variation intervals for those probabilities.

5. Repeat all these steps until all observations belonging to evidence set Ei have been made.

Figure 3 shows eight examples of 95% variation intervals over the posterior probability of
Chronic Hepatitis being persistent (a), Chronic Hepatitis being active for two different cases (b-
c), PBC (primary biliary cirrhosis) (d) being present, Toxic Hepatitis being present (d), Cirrhosis
being compensated for three different cases (f-h). There are 61 possible observations (referring to
risk factors, symptoms, and test results in the HEPAR II model) for each case and they are made
individually from left to right. We used a fixed number of N = 1, 000 samples in each experiment.
The solid line running from left to right demonstrates the development of the probability of the tar-
get event in question as new observations are made. The area around the probability line shows the
variation interval over the probability at each point in time. Please note that the variation intervals
start by being very wide in the beginning, which corresponds to the situation when nothing about
the patient is known. As more and more evidence is accumulated, the variation intervals narrow, to
the point of becoming either a point probability (when all possible 61 observations have been made)
or a fixed interval, when some of the observations have never been made in a patient’s case.

3.2 Computation time

To compare the computation time of the two proposed algorithms, for each of the three models we
generated 100 test records containing values of the observable variables. We used a version of prob-
abilistic logic sampling (Henrion, 1988), making sure that 50% of all values are missing at random.
For each record in the generated data sets, we derived 95% variation interval of posterior probability
of one target variable (randomly chosen among targets in the model), using both Algorithm 1 and
Algorithm 2. We ran our tests on a computer with Intel R© CoreTM i5-5200U CPU @ 2.20GHz
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Figure 3: Examples of 95% variation intervals over the posterior probability of Chronic Hepatitis
being persistent (a), Chronic Hepatitis being active for two different cases (b-c), PBC
(primary biliary cirrhosis) being present (d), Toxic Hepatitis being present (d), Cirrhosis
being compensated for three different cases (f-h) in the HEPAR II model.
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Figure 4: Box plots comparing computation times of variation intervals for posterior probabilities
with both versions of the algorithm (measured in seconds): the Algorithm 1 (sampling
all observable variables) and the Algorithm 2 (sampling variables from extended Markov
blanket).

processor, 8GB memory, 32KB/256KB/3MB processor cache, running Ubuntu Linux 16.04.1 LTS
x86-64 distribution. Our implementation used SMILE (Druzdzel, 1999) Bayesian network software
library.

Figure 4 shows box plots representing time spent by each of the algorithms. For the MORTAL-
ITY90D model (tree augmented naive Bayes), derivation of variation intervals takes similar amount
of time. This is understandable given that the Markov blanket of the target variable in a TAN model
consists of all remaining variables and Algorithm 2 practically deteriorates into Algorithm 1. The
slight difference between whiskers results from a different order of variables in the simulation pro-
cess. For both, the HEPAR II and CPCS179 models, Algorithm 2 is much faster (p < 10−57 for
HEPAR II model and p < 10−115 for CPCS179 model), as it takes advantage of the extended
Markov blankets of the target variables. In all three cases, the absolute computation time seems
acceptable from the point of view of an interactive user interface.
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4. Discussion and future work

In this paper, we proposed calculating variation intervals over posterior probabilities in Bayesian
networks in anticipation of future observations. We proposed a simple algorithm for deriving such
variation intervals and an improvement on this algorithm based on the concept of an extended
Markov blanket, which reduces the amount of computation needed to derive the variation intervals.
We presented examples of variation intervals calculated for practical Bayesian network models and
showed that the intervals change as expected when more information becomes available. If used
in decision support systems, variation intervals over future posterior probabilities seem to provide
interesting insight in the change of the system’s output.

We employed the variation intervals in a practical decision support system incorporating the
MORTALITY90D model in a medical decision support system calculating mortality risk of patients
after a heart transplant. Its users found the plots of 95% variation intervals over the posterior prob-
abilities highly insightful in the process of diagnosis and were delighted with the new feature. Al-
though, for other models, it may be necessary to use much wider intervals.

Our implementation uses a fixed number of 1, 000 samples to derive the example variation
intervals in Sections 3.1 and 3.2. This number is sufficient to make the variation intervals statistically
reliable. We believe that it may be possible to reduce this number and determine the necessary
sample size to obtain reasonable precision of interval bounds. This should further improve the
efficiency of the method.
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Abstract
Despite the now common view amongst neuroscientists that the brain effectively approximates
Bayesian inferences (known as the ‘Bayesian Brain hypothesis’), there are only few researchers in
the PGM community currently working in this research area. We believe that this is partially due to
a misunderstanding of the theoretical challenges that theoretical neuroscience currently faces and
the potential contribution that the PGM community can offer in interdisciplinary research. With
this paper we hope to remedy such misunderstandings and invite the community to contribute to
the mutual benefit of neuroscience and AI alike.

Keywords: Bayesian Brain hypothesis; neuroscience; interdisciplinary research.

1. Introduction

When discussing recent advances in neuroscience–that postulate that the human brain is at its
essence just an approximate Bayesian inferential machine–with scholars in the Probabilistic Graph-
ical Models (PGM) community, our research group occasionally receives lukewarm responses that
can best be paraphrased as “I’m just not interested in the brain as an application area of my re-
search”. Although there are few things as personal as a research agenda, we still feel that this lack
of interest may be at least partially due to a) a misconception of the questions that are currently
being addressed in neuroscience and b) lacking some ‘insiders insight’ in the contribution that the
PGM community can offer in interdisciplinary research. With this paper we hope to remedy both.

Our approach here is orthogonal and complementary to the approach put forward by Bielza
and Larrañaga (2014) who described the use of Bayesian networks as tools for neuroscientific re-
search, such as reconstructing human brain activity from fMRI data (Schoenmakers et al., 2015),
spatial component analysis for Alzheimer’s disease diagnosis (Illan et al., 2014), or classification
of interneurons (Mihaljević et al., 2014). This is an important area of PGM research, but already
sufficiently covered in Bielza and Larrañaga’s special issue (Bielza and Larrañaga, 2014). In con-
trast, in our approach we are interested in (computations on) graphical models as objects of study in
neuroscience, i.e., computational-level explanations of the brain’s information processing activity.

We will give a short overview of the increasingly popular ‘Bayesian Brain’ hypothesis in neuro-
science, in particular its ‘predictive processing’ manifestation. We will then identify three concrete
research areas within this topic where contributions from the PGM community can actually have a
huge scientific impact. After identifying some potential pitfalls in such interdisciplinary research,
including a discussion of the specific (and sometime peculiar) connotations of the neuroscience
community with respect to concepts like ‘Bayesian,’ ‘uncertainty,’ and ‘prior,’ we will conclude
with an invitation to the community to contribute.
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2. The Brain as ‘Application Area’ for PGM

Herman von Helmholtz (1867) is traditionally seen as the originator of the view of human perception
as (statistical) inference to the best explanation of the causes of the perceptual input. The suggestion
that the human brain can be seen as performing some approximate Bayesian inference (integrating
prior expectations with newly arriving information) was coined as early as 1957 by Edwin T. Jaynes
(first published by Jaynes (1988)). Peter Dayan and colleagues further explored these ideas and
proposed the notion of the Bayesian Brain (Yu and Dayan, 2005), emphasizing on the basis of
psychophysical evidence that human perception actually is ‘Bayes’ optimal’ in combining priors
and new signals. The Bayesian coding hypothesis (Knill and Pouget, 2004) postulates that the brain
indeed represents probability distributions in populations of neurons.

In recent years, the Bayesian Brain hypothesis has become increasingly popular due to the emer-
gence of Karl Friston’s free energy principle, providing for a biological and physical foundation;
the predictive processing view of the brain as a ‘prediction machine’ that minimizes computational
effort by trying to predict its inputs, and the spiking neural network research area that shows that
probability distributions can be encoded and sampled from using power-efficient networks of spik-
ing neurons. We will elaborate more on these three important recent developments.

2.1 The free energy principle

Friston’s free energy principle (Friston, 2009, 2010) postulates that any biological system that ‘re-
sists a tendency to disorder’ – be it a single cell or a social network – effectively aims to minimize
free energy. In thermodynamics, free energy is the amount of energy that is potentially available,
but not put to effective use. In information theory, it is a measure on the discrepancy between our
observation of the world and our model of the world, which becomes manifest as the prediction
error between predicted and observed world state. A biological system that aims to defy disorder
seeks to lower expected entropy (the average of surprise of future outcomes). It can do so by mini-
mizing prediction error, that is, aiming to make the predicted world state match the observed world
state (adapting one’s models of the world), or vice versa (changing one’s sensory input by acting
upon the world). Because biological systems must remain within certain boundaries to exist, their
models of what the world should look like (e.g., have access to a sufficient, but not excess, amount
of oxygen to maintain homeostasis) and how they currently perceive the world (e.g., shortage of
oxygen) should match, and if not, actions are taken to minimize this prediction error (e.g., breathe
faster and deeper). Friston (2009, p.295) summarizes this by postulating that (i) agents resist a
natural tendency to disorder by minimizing a free-energy bound on surprise; (ii) this entails acting
on the environment to avoid surprises, which (iii) rests on making Bayesian inferences about the
world.

2.2 Predictive processing

The Predictive Processing account proposes that the brain continuously predicts its inputs in a hi-
erarchical cascade of (increasingly more concrete) probabilistic predictions (Clark, 2013, 2015;
Hohwy, 2013). For example, when observing a bowler on a bowling lane, contextual information
(“this bowler already hit three strikes in this game”) will generate predictions for the result of the
throw (“many pins will fall down”). Based on that expectation, more specific predictions will be
made for the throwing kinematics, the ball trajectory, where the ball will hit the pins, etc. Ultimately
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this will generate predictions for sensory inputs to, e.g., the retina. Violations of predictions (a miss)
will yield prediction errors that need to be ‘explained away’ by updating ones hypotheses (“even
good bowlers will sometimes fail to throw a strike”), taking new contextual information into con-
sideration (“the bowler seems to have injured his wrist whilst throwing”) etc. Predictions are made
with a specific precision, reflecting uncertainty about outcomes due to limited exposure (i.e, re-
ducible uncertainty) or due to inherent stochasticity of the data-generating process (i.e., irreducible
uncertainty). Prediction errors are used to update the generative models to minimize the reducible
uncertainty.

The computations ‘under the hood’ of this conceptual description can be described and analyzed
as various computations on causal Bayesian networks, such as the computation of posterior prob-
ability distributions, updating hyperparameters of distributions, and tuning of selected parameters
of the network (Kwisthout et al., 2017). Despite its popularity as a unifying theory, it is far from
clear what the brain’s approximation algorithms actually look like; in Clark’s words: What do the
local approximations to Bayesian reasoning look like as we depart further and further from the safe
shores of basic perception and motor control? What new forms of representation are then required,
and how do they behave in the context of the hierarchical predictive coding regime (Clark, 2013,
p.201)?

2.3 Networks of spiking neurons

One of the most promising computational models of neuronal computation in general is the recurrent
network of spiking neurons model (Maass, 2014). These biologically inspired networks mimic
Boltzmann machines (neural networks that represent a probability distribution that can be sampled
from), with a key difference that the neurons are not outputting a zero or one state, but a spike;
a brief burst of energy. These networks are energy-efficient and stochastic in nature and they can
represent, and reason with, arbitrary probability distributions by means of stochastic sampling in
winner-take-all microcircuits (Buesing et al., 2011; Pecevski et al., 2011; Habenschuss et al., 2013).
It has been proposed that such sampling methods (like MCMC sampling) are the most promising
techniques to describe actual stochastic inferences in the brain (Tenenbaum et al., 2011). Because
of their efficiency – the brain uses a mere 25W of energy – these networks are potentially crucial for
future generations of computer hardware by utilizing (rather than trying to filter) the noise that is
inherent at the nano-scale (Hamilton et al., 2014). No free lunch is offered, though: As approximate
Bayesian inference is an intractable problem (Dagum and Luby, 1993; Kwisthout, 2018), there will
be problem instances where the convergence time of the network will grow exponentially with the
input size, in particular in networks with extreme probability distributions (Maass, 2014).

In terms of Marr’s levels of explanation (Marr, 1982), one can see the free energy principle as
aiming to answer the ‘why’ of the Bayesian Brain hypothesis, the predictive processing account
describes ‘what’ is actually being computed, whereas the ‘spiking neurons’ community studies
the algorithmic ‘how’ aspect of approximate Bayesian computations in the brain. Where the free
energy/predictive processing and the networks of spiking neurons communities were traditionally
relatively isolated – as a proxy, one could see them as exponents of the UK, respectively Continental
approach towards theoretical neuroscience – there have been recent mutual research events (for
example at the European Institute for Theoretical Neuroscience in Paris) that try to bridge the gap
between both communities.
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2.4 Organization of this paper

All these developments support the ‘Bayesian’ view of the brain as it is currently dominant in
contemporary neuroscience. We believe that this opens up a significant area of research for the PGM
community. In the remainder of this paper we will further elaborate on this. We will show how a
formal and computational background can help to bring conceptual clarity and formal rigidity to
the field; how neuroscience is in urgent need for new algorithms, implementations, and complexity
analyses that computer scientists and AI practitioners can provide, and where new questions in the
‘meta’-theory of learning and modifying Bayesian networks emerge.

3. Conceptual Clarity and Rigidity

An important area where researchers with a strong background in computational and formal model-
ing can make vital contributions is in offering conceptual clarity and formal rigidity, translating ver-
bal theories into complete and consistent computational models, thus exposing ambiguities and gaps
in the theory and explicating ‘design choices’ and their computational consequences (Otworowska
et al., 2015). Examples are in the formal explication of the role and nature of the underlying prin-
ciples of predictive processing (Phillips, 2017; Kay and Phillips, 2011; Thornton, 2017), critically
assessing the validity of simplifying assumptions (Otworowska et al., 2014, see also Figure

Figure 1: Recognition density for apples and pears based on the shape of the bulbous cone. Observe
that, based on the frequency of apple-shapes, pear-shapes, and ‘intermediate shapes’ in
the world, this recognition density cannot be assumed to be a simple Gaussian density; a
violation of the Laplace assumption in Friston (2010). Picture reprinted (with permission)
from Otworowska et al. (2014).

In the predictive processing theory, precision-weighted stochastic predictions are compared with
actual observations and only the residual (non-predicted) signal is processed by the brain. Here,
‘processed’ means that by belief revision or by intervention the model and the reality are adapted
to converge; a process denoted by prediction error minimization. For example, when we are tossing
a coin to decide which team will start a match, initially we have uniform probability distributions
predicting who wins the toss (the home or away team), what the outcome of the coin toss is (heads
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or tails), and what visual stimuli we observe (either side of the coin). Note that these predictions are
uncertain due to the inherent stochasticity of tossing coins, and will inevitably induce a prediction
error when the coin lands as this will generate one bit of information that could not yet be predicted.
This information is propagated ‘upwards’ by the prediction error minimization mechanism: the out-
come is updated to ‘heads,’ which induces a prediction error with the original uniform prediction; in
turn, the winner of the toss is updated to the away team to minimize this prediction error. Prediction
error minimization is thus the mechanism by which information is processed in the brain.

Prediction errors, however, are dependent on the state space of the prediction and its granularity
(the number of categories distinguished). In the absence of a coin we might have used a regular die
and predict ‘odd’ or ‘even’ instead. We thus lower the typical state space of a die throw. Similarly,
we might think of different sets of predicted inputs made by a couple strolling through the forest on
a Sunday afternoon and an arborist looking for potentially hazardous situations in the same forest.
From a modeling perspective: When we move from Gaussian densities to describe predictions in
early vision or simple motor control to discrete probability distributions to describe higher cognitive
capacities, we need to define what our categories are, and the granularity of our categories deter-
mines the prediction error. If we interpret the outcome of a die throw as odd or even, the prediction
error decreases from 2.58 bits to 1 bit. This observation—made from an information-theoretic point
of view—led to a further refinement of the predictive processing account with the notion of levels
of detail of models and predictions (Figure

4. Theory, Algorithms, and Analysis

Most, if not all, computational problems in Bayesian networks are intractable. For example, infer-
ence is PP-complete (Littman et al., 1998), which implies that there cannot exist efficient approxi-
mation algorithms in general, unless BPP equals PP; casting a possible shadow over the biological
plausibility of the Bayesian brain hypothesis. It has been suggested (e.g., (Clark, 2013, p.25, p.31))
that processing only the prediction error is less computationally demanding as processing the entire
input and that predictive processing thus allows for a tractable implementation of the Bayesian Brain
hypothesis. This assumption, however, does not (by and of its own) render inferences tractable. It
was shown that processing even a single bit of prediction error is an NP-hard problem (Kwisthout,
2014). Recent developments in the area of fixed-parameter tractability allow for the analysis of
stochastic computations where the probability of answering incorrectly is parameterized, rather than
the computation time (Kwisthout, 2015, 2018). This allows for the study of so-called fixed error
randomized tractable approximations, relative to ‘ecologically valid’ parameters, viz. parameters
that can plausibly be assumed to be small in the computations as performed by the brain. In a sepa-
rate paper submitted to this conference we show that the (relative) size of the prediction error plays
virtually no role at all in tractability considerations: approximations are intractable or tractable, rel-
ative to a set of parameters, irrespective of the size of the prediction error (Donselaar, 2018). This
effectively defies Clark’s assertion; the biological validity of constraining parameters that do render
approximation tractable, such as the local variance bound (Dagum and Luby, 1997), is currently
under investigation.

Apart from process-level considerations (under what constraints can the approximations postu-
lated by predictive processing be tractable), one can study the properties and plausibility of neuronal
implementations of such approximations using networks of spiking neurons. Crucial properties here
are the power efficiency of such networks (Maass, 2014), the nature of the noise in the brain and its
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P(P |H) =

p1 p2 p3 p4

h1 0.5 0.5

h2 0.7 0.3

h3 0.6 0.4

h4 0.2 0.8

P(P |H) =

p1 p2 p3 p4

h1

h2

h3

h4

P(p1 ∨ p2|h1 ∨ h2) =
1
2 (P(p1|h1) + P(p2|h1) + P(p1|h2) + P(p2|h2))

Low detail P , high detail H

P(p1 ∨ p2|H) = P(p1|H) + P(p2|H)

H

P

P(P |H) =

p1 p2 p3 p4
h1 0.3 0.2 0.4 0.1
h2 0.6 0.1 0.2 0.1
h3 0.2 0.4 0.3 0.1
h4 0.1 0.1 0.4 0.4

High detail H, high detail P

0.45 0.15 0.3 0.1

0.15 0.25 0.35 0.25

High detail P , low detail H

P(P |h1 ∨ h2) =
1
2 (P(P |h1) + P(P |h2))

Low detail P , low detail H

P(P |H) =

p1 p2 p3 p4

h1

h2

h3

h4

0.6 0.4

0.4 0.6

Figure 2: A formalization of the relationship between different levels of detail of hypotheses and
predictions. Observe that actual hypotheses, as well as predictions, can be clustered,
re-defining the conditional probability distributions in a straightforward way.

consequences for efficient sampling (Habenschuss et al., 2013), and the general question how many
resources are needed for effective computations (Maass, 2000). Computational complexity theory
offers an indication of the resources needed for a particular computational problem to be solved, as
a function of the input size of a problem. These resources – most notably, time and memory – are
typically fairly coarse and built on a theoretical abstract model of computation: Turing machines.
Here, the ‘time’ resource refers to the number of state transitions in the machine, and the ‘memory’
resource refers to the number of memory cells on the tape that are used. It has been proposed by
a working group at the Dagstuhl seminar on Resource-Bounded Problem Solving (seminar 14341)
to have a more refined, brain-focused model of computation in the brain, based on networks of
spiking neurons, and have complexity measures based on brain resources, such as spiking rates,
network size, and connectivity (Haxhimusa et al., 2014). The development of such a model of com-
putation would allow for seminal contributions to the Bayesian Brain hypothesis by analyzing the
fundamental limits of brain computations.
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5. Meta-theory of Bayesian Networks

When a prediction error is to be accounted for, one can either update ones current beliefs about
the actual hypotheses, act upon the world in order to bring the reality closer to the desired state, or
try to reduce uncertainty by observing hidden variables. These predictive processing sub-processes
(belief revision, intervention, and adding observations) correspond to aspects of parameter tuning
and sensitivity analysis (Coupé et al., 2000), counterfactual and prospective reasoning (Pearl, 2000),
and selecting evidence (van der Gaag and Bodlaender, 2011). Several conceptual issues are still not
resolved; for example, how counterfactual models can be built up and how we can use structure
equation models to reason about what action we should undertake. Algorithmic and analytical
aspects of these problems are of direct relevance to the Bayesian Brain hypothesis.

When learning a Bayesian network from data one might reconstruct the structure of the network,
the probability distributions, and even the distributions over hidden variables. Crucially, though, one
needs to settle beforehand on the variables and their state space. This is to be contrasted with how
generative models in the Bayesian brain hypothesis are actually constructed: Here, one somehow
needs to ‘learn’ new variables and the values they can take, both for potential causes and their
observable manifestations. The question then arises when a Bayesian learner realizes that the current
model is insufficient and new hypotheses should be formed, as well as what these hypotheses should
look like (Carroll and Kemp, 2013). This process can be coined as model revision (Figure

Figure 3: Model updating, model refinement, and model revision processing relative to the predic-
tion error and the amount of irreducible uncertainty. See the main text for explanation of
these strategies.

Another vital open problem in the predictive processing account relates to the trade-off between
making predictions that are very detailed and predictions that are likely to be correct. For example,
when predicting the outcome of a throw at a bowling lane, a prediction over a distribution containing
values like ‘pin four will be hit by the ball from the left side and will topple over pins seven and
eight’ is very detailed, but probably always gives a huge prediction error. On the other hand, a
prediction like ‘the ball will hit the pins and some will fall’ is likely to be correct, but as a prediction
not very informative. There are reasons to believe that particular neurotransmitters control this level
of detail (Pink-Hashkes et al., 2017), but from a more meta-perspective it is completely open how
causal Bayesian models can be ‘flexible’ in their granularity and how algorithms on such models
may trade-off information gain and prediction error.
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6. Potential Pitfalls

In the previous sections we highlighted several research areas and tentative research questions where
the PGM community can substantially contribute to the ‘Bayesian Brain’ with a potential for con-
siderable impact. Notwithstanding this potential, there are also pitfalls to avoid that are inherent
risks of interdisciplinary work, in particular when the research fields have different cultures and tra-
dition and use specific terminology that may be misunderstood. Here we enumerate a few potential
pitfalls.

• ‘Terminology’ — An informal quiz at the interdisciplinary Lorentz Center workshop ‘Per-
spectives on Human Probabilistic Inference’1 on the association that participants had with
the word ‘Bayesian’ was illuminative to us. For some participants Bayesian was a synonym
of probabilistic, for others it concerned the semantics of probability distributions (subjective,
as contrasted with frequentist), yet others associated Bayesian with Bayes’ rule for updating
distributions. In cognitive science communities, Bayesian is often synonymous with optimal
models and contrasted with heuristic explanations. Despite the traditional interpretation of
‘Bayesian’ as ‘subjective degrees of belief’ (Jaynes, 2003), it is not uncommon for propo-
nents of the Bayesian Brain hypothesis to have a strong frequentist view on probabilities as
describing the objective state of the world (Fiorillo, 2012). Similarly diverse (and sometimes
counterintuitive) associations could be elicited for terms like ‘prior,’ ‘uncertainty,’ ‘informa-
tion,’ and ‘structure.’ The bottom line is to be aware of potential misunderstandings and to be
explicit of one’s intended meaning of such terms in communication with neuroscientists.

• ‘Culture and tradition’ — In computer science and artificial intelligence, acceptance of a
paper to a prestigious conference such as AAAI, UAI, NIPS or STOC is distinctive. Many
scholars focus their publication strategy on such conferences, rather than journal papers. In
neuroscience, a conference publication is close to irrelevant when it comes to evaluating re-
search output; much more emphasis is put on the impact factor of the journals one is pub-
lishing in. Culture and tradition put emphasis on different ‘golden standards’ of excellence in
research, validity of research methodology, and importance of research topics. Awareness of
such issues and an open mind may help avoid or solve misunderstandings.

• ‘Interdisciplinary’ — Members of interdisciplinary teams have different backgrounds and
distinct areas of expertise; that is exactly the main benefit of having interdisciplinary collab-
orations at all. There is a fine line between ‘nitpicking on details’ versus ‘allowing crucial
misconceptions to exist’ in interdisciplinary collaborations, and it requires some expertise to
see what is important and what not. For example, it is rarely important to insist on the distinc-
tion between NP-hardness and NP-completeness of a problem, but the difference between
an observation and an intervention in (causal) Bayesian networks may well be important to
clarify. Don’t assume your neuroscience collaborators share your background, and don’t be
afraid to ask for clarification about what seems obvious to them. But do understand that a
major intellectual effort will be spent on thoroughly understanding each other where this is
important for scientific progress.

• ‘Selling your work’ — An elegant intractability proof or a new formalization of a verbal the-
ory is typically not sufficient for publication in neuroscience outlets. In order to get published

1. http://www.lorentzcenter.nl/lc/web/2014/627/info.php3?wsid=627&venue=Oort
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one should aim to understand the problems that neuroscientists care about, make clear why
your contribution is instrumental in solving these problems, and write in a way that connects
to their background and expectations. It might be difficult to convince one’s departmental
chair or (grant) reviewers of the relevance of this work. Our approach is to seek for niches
that both allow for a significant PGM contribution and solve crucial problems with respect to
the Bayesian Brain.

7. Conclusion

Despite the potential pitfalls we identified in the previous section, we strongly believe computer sci-
entists and AI practitioners working in the PGM area can make a vital interdisciplinary contribution
to contemporary theoretical neuroscience. With this paper we hope to have given an overview of
crucial open problems in the Bayesian Brain hypothesis and a sketch of the contributions that the
PGM community can offer. We conclude this paper with this quote from Karl Friston that (probably
inadvertently) illustrates the importance of research on probabilistic graphical models for theoretical
neuroscience: Life (. . . ) is an inevitable and emergent property of any (ergodic) random dynamical
system that possesses a Markov blanket (Friston, 2013). We would like to invite the community
to bring their toolbox of computational and formal modeling and help to advance this fascinating
research area — who knows what else may emerge!
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Abstract
We consider the Bayesian network structure learning (BNSL) problem when the variables are con-
tinuous. To this end, we construct a dynamic programming (DP) -based algorithm, and consider
applying a branch and bound (B&B) approach to speed up computations. Although B&B has been
applied to discrete BNSL in the literature, neither DP nor B&B have not been considered for con-
tinuous BNSL. Our scores are information criteria in the form −log(likelihood) + K ∗ d(N),
where K and d(N) are the size of parent set and a function of sample size N (if d(N) = 1

2 logN ,
then the information criterion is BIC). We derive a lower bound for the B&B framework, and did
experiments for various d(N), N , and p (the number of variables). The surprising news is that the
proposed B&B is considerably efficient: 5 ∼ 10 times faster and 20 ∼ 100 times faster for p = 20
and for p = 25, respectively, compared with when no B&B is applied.
Keywords: branch and bound, Bayesian networks, structure learning, BIC.

1. Introduction

We consider learning stochastic relations among variables from data. If we mean by the relations
conditional independence (CI) among variables, and if we express them via a directed acyclic graph
(DAG), then such a graphical model will be a Bayesian network (BN) (Pearl, 1988). In general, a BN
is defined by its structure and parameters, i.e., its topology of nodes and edges and the conditional
probabilities of variables given other variables.

There are several approaches for Bayesian network structure learning (BNSL). We may test each
CI statement between two variable sets given another variable set with the three disjoint sets using a
heuristic such as the PC algorithm (Spirtes et al., 1993). In this paper, however, we focus on score-
based approaches such as maximizing the posterior probability of a selected structure based on
the prior probability and data (Cooper and Herskovits, 1992), or minimizing the description length
(MDL) (Rissanen, 1978) of data for a selected structure (Suzuki, 1993): given data, we compute its
score for each structure and select a structure with the optimal value.

In this paper, we focus on the BNSL problem for continuous variables.
BNSL consists of finding the optimal parent sets and ordering of the variables. We note that as

the number of variables grows, the computation exponentially increases (Chickering et al., 2003).
For many years, several authors of BNSL have been considering pruning the search space when
searching the optimal parent sets in a depth-first manner. Suzuki (1996) proposed a pruning rule
for the MDL principle to reduce the computation; Tian (2000) proposed variants of Suzuki (1996);
Campos and Ji (2011) pointed out that finding the optimal parent sets w.r.t. the MDL principle takes
at most polynomial time of p when the sample size N is a constant; Campos and Ji (2011) also
proposed a pruning rule for the BDeu; and Suzuki (2016) proposed a pruning rule for maximizing
the posterior probability based on Jeffreys’ prior. Recently, Suzuki (2017) proved that BDeu based
BNSL is not regular; and Suzuki and Kawahara (2017) claimed that it is the main reason of why

49



the B&B for BDeu proposed by Campos and Ji (2011) is not efficient. and proposed a framework
containing the B&B approaches of regular BNSL.

However, no B&B for BNSL with continuous variables have been considered thus far. Even the
unified framework proposed by (Silander and Myllymaki, 2006; Singh and Moore, 2005; Ott et al.,
2004) was not used for continuous BNSL. The commonly used approach to continuous BNSL is
learning an undirected graph structure first and estimating the directions (v-structure identification)
later in which the PC algorithm (Spirtes et al., 1993) is often used for the first part, However, the
two-step approach works only when the sample size is large because the second part assumes that
the first part which depends on some CI test is correct.

In this paper, we apply the unified framework that has been used only for discrete BNSL to the
continuous counterpart. The score will be a wide range of information criteria that contain AIC
(Akaike, 1973) and BIC (Schwarz, 1978), etc.

The main issue in this paper is whether the B&B approach works for continuous BNSL. In this
paper, we derive a lower bound for B&B, and construct an algorithm that contains the bound in the
dynamic programming framework.

From our experiments, we find that the proposed B&B runs 5 ∼ 10 times faster and 20 ∼ 100
times faster for p = 20 and for p = 25, respectively, compared with when no B&B is applied. Also,
we will see that the efficiency does not decay so much when d(N) becomes small as the discrete
B&B ones do. Similar phenomena was examined also by real data such as Hitters and breastcancer
data sets.

Some might say that the proposed procedure is only for Gaussian BNs rather than (general)
continuous BNs. In fact, the score is derived assuming the underlying distribution is Gaussian.
However, the score in the form of an information criterion is popular and is used in many cases.
This paper proposes a computation procedure and can be used even when no Gaussian distribution
is assumed.

This paper is organized as follows: Section 2 introduces background material for understanding
the results in this paper: linear regression and information criteria, a formulation of the Bayesian
network structure learning (BNSL) problem that consists of two parts, a dynamic programming
framework of finding parent sets, and a B&B approach for BNSL with discrete variables. Section 3
proposes a novel B&B algorithm for BNSL with continuous variables: derive a lower bound of the
B&B for saving the computation and construct a proposed algorithm based on the bound. Section
4 shows the results of experiments for various information criteria, and applications to real-world
datasets. Section 5 concludes the discussion and raises future research directions.

2. Preliminaries

In this section, we introduce background material for understanding the results in this paper.
Suppose we have N samples {(xi,1, · · · , xi,p)}Ni=1 from p (continuous) variables, where each

xi,j ∈ R is a realization of variable Xj , j = 1, · · · , p, and they are related by the equations: for
k = 1, · · · , p

Xk =

k−1∑

j=1

βk,jXj + εk ,

where {βk,j}k−1j=1 are unknown constants, and variable εk is independent of ε1, · · · , εk−1. We refer
πk := {j|βk,j 6= 0} as to the parent set of variable Xk.

Branch and Bound for Continuous Bayesian Network Structure Learning
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We do not know the order among the p variables implied by the equation above and parent sets
π1, · · · , πp a priori but need to estimate them from the data. We refer to this problem as BNSL with
continuous variables.

2.1 Linear Regression and Information Criteria

Suppose we have N samples {(xi,1, · · · , xi,p, yi)}Ni=1 from p variables, where (xi,1, · · · , xi,p) ∈ Rp
and yi ∈ R are realizations of variables (X1, · · · , Xp) and Y , respectively, and they are related by
the equation:

Y =

p∑

j=1

βjXj + ε

with {βj}pj=1 and ε being constants and a random variable, respectively.
To find the parent set π = {j|βj 6= 0} from the data, we often compare the values of an

information criterion of the form

IC := N log σ̂2 + |π|d(N)

for the candidate parent sets to choose the one that minimizes the score, where σ̂2 is the residual
sum of squares for parent set π, |S| is the cardinality of set S, and d(N) is a function of N . More
precisely, we have

σ̂2 :=
1

N − 1

N∑

i=1

(yi −
∑

j∈π
β̂jxi,j)

2 , (1)

where β̂j are estimates of the βj , j = 1, · · · , p.
The information criteria we consider are Akaike’s information criterion (AIC), the Hannan and

Quinn (HQ), and the Baysian information criterion (BIC) for d(N) = 1, d(N) = log logN , and
d(N) = 1

2 logN , respectively (Akaike, 1973; Hannan and Quinn, 1979; Schwarz, 1978). However,
any d(N) can be used as long as it takes nonnegative values and increases monotonically in N . It
is known that the parent set π is estimated correctly in probability and almost surely if

lim
N→∞

d(N) =∞ and lim
N→∞

d(N)

N
= 0

and if

lim
N→∞

d(N)

log logN
=∞ and lim

N→∞
d(N)

N
= 0 , (2)

respectively (Suzuki, 2006). Note that BIC satisfies both conditions while AIC satisfies neither, and
that HQ has the minimum d(N) that satisfies (2).

2.2 A Unified Approach for BNSL

We reduce BNSL to finding the parent sets π1, · · · , πp that minimize the sum of the scores

IC(k ∼ πk) := N log σ̂2k + |πk|d(N) (3)

over k = 1, · · · , p, where the parameters in (1) are replaced by

σ̂2k :=
1

N − 1

N∑

i=1

(xi,k −
∑

j∈πk
β̂k,jxi,j)

2 .
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Then, we consider minimizing the quantity IC(k ∼ πk) w.r.t. πk ⊆ {1, 2, · · · , k − 1} for each
k = 1, · · · , p.

In this problem, however, we do not know the order among the variables a priori and estimate it
by minimizing the total score.

Let (a1, · · · , ap) be a permutation of (1, · · · , p). We extend k and {1, 2, · · · , k − 1} into ak and
{a1, · · · , ak−1} in the definition (3), respectively, and define the value of IC(ak ∼ πk). We find the
permutation (a1, · · · , ap) that minimizes

p∑

k=1

min
πk⊆{a1,···,ak−1}

IC(ak ∼ πk) . (4)

For example, if p = 3, then we compute the following twelve

minπ⊆{} IC(1 ∼ π) minπ⊆{} IC(2 ∼ π) minπ⊆{} IC(3 ∼ π) minπ⊆{1} IC(2 ∼ π)
minπ⊆{1} IC(3 ∼ π) minπ⊆{2} IC(3 ∼ π) minπ⊆{2} IC(1 ∼ π) minπ⊆{2,3} IC(1 ∼ π)
minπ⊆{3,1} IC(2 ∼ π) minπ⊆{1,2} IC(3 ∼ π) minπ⊆{1} IC(3 ∼ π) minπ⊆{2} IC(3 ∼ π)

(5)
and compare the following six

minπ1⊆{} IC(1 ∼ π1) + minπ2⊆{1} IC(2 ∼ π2) + minπ3⊆{1,2} IC(3 ∼ π3)
minπ1⊆{} IC(1 ∼ π1) + minπ2⊆{1} IC(3 ∼ π2) + minπ3⊆{1,3} IC(2 ∼ π3)
minπ1⊆{} IC(2 ∼ π1) + minπ2⊆{2} IC(1 ∼ π2) + minπ3⊆{1,2} IC(3 ∼ π3)
minπ1⊆{} IC(2 ∼ π1) + minπ2⊆{2} IC(3 ∼ π2) + minπ3⊆{2,3} IC(1 ∼ π3)
minπ1⊆{} IC(3 ∼ π1) + minπ2⊆{3} IC(1 ∼ π2) + minπ3⊆{1,3} IC(2 ∼ π3)
minπ1⊆{} IC(3 ∼ π1) + minπ2⊆{3} IC(2 ∼ π2) + minπ3⊆{2,3} IC(1 ∼ π3)

(6)

for (a1, a2, a3) = (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), and (3, 2, 1). Thus, we will find
optimal parent sets. For example, if the fourth in (6) is the smallest among the six, then the π1, π2,
π3 that minimize IC(2 ∼ π1), IC(3 ∼ π2), IC(1 ∼ π3) will be the parent sets of X2, X3, X1,
respectively.

In general, BNSL is classified into two subproblems (Silander and Myllymaki, 2006; Singh and
Moore, 2005; Ott et al., 2004), which can be investigated separately:

1. compute minπ⊆S IC(a ∼ π) for each pair of a ∈ {1, · · · , p} and S ⊆ {1, · · · , p}\{a}, where
π ⊆ S is the parent set; and

2. using the p2p−1 values computed in the first step, obtain the permutation (a1, · · · , ap) of
(1, · · · , p) that minimizes (4).

The two-step framework directly identifies an optimal DAG, and does not require learning an undi-
rected graph structure first and estimating the directions later. For example, if p = 3, then we
compute p2p−1 = 12 quantities as in (5) and compare p! = 6 quantities as in (6).

On the other hand, we can consider the second problem as the shortest path problem. In fact,
minπk⊆{a1,···,ak−1} IC(ak ∼ πk) is the shortest path to ak when the nodes a1, · · · , ak and the dis-
tances IC(a ∼ S) obtained in the first problem are given (Yuan and Malone, 2013). Thus, whether
the BNSL is either discrete or continuous does not matter to the second problem while it does to the
first.

In this paper, we mainly consider the first problem.
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Figure 1: Left: The ordered graph from {} to {1, 2, 3}: compute IC∗(S) for S ⊆ {1, 2, 3} and
find their aseociated parent sets in a bottom-up manner. Right: If IC∗({1}) is a lower-
bound of IC({1, 2}), then we do not have to compute IC({1, 2}) and IC({1, 2, 3}) in
red circles; and if IC∗({}) is a lower-bound of IC({3}), then we do not have to compute
IC({3}), IC({1, 3}), IC({2, 3}) and IC({1, 2, 3}) in blue circles.

2.3 Finding the Parent Sets via Dynamic Programming

In this subsection, we fix ak = a and drop suffix k to consider the minimization of IC(a ∼ π) w.r.t.
π ⊆ S for all S ⊆ {1, · · · , p}\{a}.

Let IC(S) := IC(a ∼ S) and IC∗(S) := minπ⊆S IC(a ∼ π). Then, we have (Silander and
Myllymaki, 2006)

IC∗(S) = min{IC(S),min
b∈S

IC∗(S\{b})} . (7)

We see that the values of IC∗(S) for S ⊆ {1, · · · , p}\{a} can be obtained via an ordered graph
(Figure 1) in a bottom up manner. Suppose that p = 4 and a = 4, thus S ⊆ {1, 2, 3} as in Figure 1
(Left). At first, we find π1 = {} and compute IC∗({}) = IC({}). Then, from (7), we have

IC∗({1}) = min{IC({1}), IC∗({})} = min{IC({1}), IC({})} .

Similarly, we obtain IC∗({2}) and IC∗({3}). Furthermore, from (7), we obtain

IC∗({1, 2}) = min{IC({1, 2}),min{IC∗({1}), IC∗({2})}}

and other two valus (IC∗({2, 3}), IC∗({3, 1})). Finally, we obtain

IC∗({1, 2, 3}) = min{IC({1, 2, 3}),min{IC∗({1, 2}), IC∗({2, 3}), IC∗({3, 1})}} .

Note that IC∗(S) := minS′⊆S IC(S′) holds for all S ⊆ {1, 2, 3}.

2.4 Branch and Bound for BNSL with Discrete Variables

In order to estimate (4), we need to compute the p2p−1 values for the subsets of parents. In this
subsection, we consider reducing the computation using the so-called B&B technique. B&B ap-
proaches, even though they are more cimputationally efficient, are guaranteed to find a globally
optimal solution.
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Suppose that there exist a subset S ⊆ {1, · · · , p}\{a} and its element b ∈ S such that in (7),

IC∗(S\{b}) ≤ IC(S′) (8)

for S′ ⊇ S. Then, we do not have to compute the value IC(S′) for S′ ⊇ S, and can conclude
IC∗(S′) ≤ IC∗(S\{b}) for S′ ⊇ S.

For example, in Figure 1 (Right), if the valus of IC(S) is bounded below by c for S ⊇ {1, 2}
and we find IC∗({1}) ≤ c, then we can conclude IC∗({1}) ≤ IC(S) and IC∗(S) ≤ IC∗({1})
for S = {1, 2}, {1, 2, 3}. Note that we cannot tell from this whether IC∗(S) = IC∗({1}) for
S = {1, 2}, {1, 2, 3}. For example, if c′ := IC∗({2}) < c, we obtain IC∗({1, 2}) = c′; and if
c′′ := min{IC∗({1, 3}, IC∗({2, 3})} is less than c and c′, we obtain IC∗({1, 2, 3}) = c′′.

To apply B&B to BNSL, we need to derive a lower bound formula. The first lower bound was
proposed by Suzuki (1996) for discrete variables, and several authors considered variants afterward
(Tian, 2000; Campos and Ji, 2011). For the BDeu scores (Buntine, 1991; Ueno, 2008), (Campos and
Ji, 2011) and (Cussens and Bartlett, 2015) derived lower bounds. Recently, (Suzuki, 2017; Suzuki
and Kawahara, 2017) proved that BDeu is not a regular BNSL and proposed a novel B&B method
for regular BNSL. However, thus far, the B&B technique has been proposed only for BNSL with
discrete variables.

Let αj be the number of possible values that Xj takes for j = 1, · · · , p. Suppose that we find
the parent set π of variable Xa with a ∈ {1, · · · , p} over π ⊆ S ⊆ {1, · · · , p}\{a}. In the discrete
settings, the negated log likelihood is proportioinal to the empirical conditional entropy H(π) of
Xa given {Xk|k ∈ π}, and the number of parameters will be K(π) := (αa − 1)

∏

k∈π
αk. Thus, the

description length (Rissanen, 1978) will be H(π) +
K(π)

2
log n.

Suppose that the inequality in

IC∗(S\{b}) := min
π⊆S\{b}

2{H(π) +
K(π)

2
log n} ≤ K(S) log n

holds for some b ∈ S. Then, since H(S′) ≥ 0 and K(S′) ≥ K(S) for S′ ⊇ S, we have (8):

IC(S′) := 2H(S′) +K(S′) log n ≥ K(S) log n ≥ IC∗(S\{b})

for any S′ ⊇ S (Suzuki, 1996).
For example, in Figure 1 (Right), if IC∗({1}) ≤ K({1, 2}) log n, then we can conclude

IC(S) ≥ IC∗({1}) and IC∗(S) ≤ IC∗({1}) for S = {1, 2}, {1, 2, 3} (see the red circle).

3. Branch and Bound for BNSL with Continuous Variables

In this section, we propose a novel B&B algorithm for BNSL with continuous variables.

3.1 Proposed Pruning Rule

In this subsection, we derive a lower bound for applying B&B to BNSL with continuous variables.
Without loss of generality, we assume that a = p and S ⊆ {1, · · · , p− 1}, and define

IC(p ∼ π) := N log σ̂2π + |π|d(N) ,
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where σ̂2π :=
1

N − 1

N∑

i=1

(xi,p −
∑

j∈π
β̂p,jxi,j)

2 for π ⊆ S.

Let IC(S) := IC(p ∼ S) and IC∗(S) := minπ⊆S IC(p ∼ π). If IC∗(S\{b}) ≤ min
S′⊇S

IC(S′)

for S ⊆ {1, · · · , p − 1} and b ∈ S, we do not have to compute any IC(S′) for S′ ⊇ S, and can
conclude that IC∗(S′) ≤ IC∗(S\{b}) for S′ ⊇ S. We give a lower-bound of minS′⊇S IC(S′) as
follows:

Proposition 1 IC(S′) ≥ N log σ2{1,···,p−1} + |S|d(N) for S′ ⊇ S.

Proof. Noting S ⊆ S′ ⊆ {1, · · · , p − 1}, we have σ̂2S′ ≥ σ̂2{1,···,p−1} and |S′| ≥ |S|, which implies
the claim:

IC(S′) = N log σ̂2S′ + |S′|d(N) ≥ N log σ2{1,···,p−1} + |S|d(N) .

For example, if p = 4, then the maximum log-likelihood is

L := max
β4,1,β4,2,β4,3

N log{ 1

N − 1

N∑

i=1

(xi,4 −
3∑

j=1

β4,jxi,j)
2} ,

and for each subset S of {1, 2, 3}, the lower-bound in Proposition 1 is L+ |S|d(N).

3.2 Proposed Algorithm

In this subsection, based on Proposition 1, we construct an algorithm that finds the parent sets π(S)
for all S ⊆ {1, · · · , p− 1} that minimize IC(p ∼ π) w.r.t. π ⊆ S, with less computation. We show
the procedure in Algorithm 1. The definitions of σ̂2S , IC(S), and IC ∗ (S) for S ⊆ {1, · · · , p− 1}
are given in the previous subsection.

Algorithm 1
Input {(xi,1, · · · , xi,p)}Ni=1, Output π(S), S ⊆ {1, · · · , p− 1}

In the ascending order1 of S ⊆ {1, · · · , p−1}, we set cut(S) :=FALSE for S ⊆ {1, · · · , p−1}
and take the following steps for each S.

1. if cut(S\{b}) = TRUE for any b ∈ S, then cut(S) := TRUE;

2. if b∗ := argminb∈S IC∗(S\{b}), then
{
π(S) := π(S\{b∗})
IC∗(S) := IC∗(S\{b∗})

3. if cut(S) = FALSE, then

(a) if IC∗(S\{b∗}) < N log σ̂2{1,···,p−1} + |S|d(N), then cut(S) := TRUE;

(b) else if IC(S) < IC∗(S), then
{
π(S) := S
IC∗(S) := IC(S)

If the condition in the pruning rule in 3(a) is met for S and b∗, then cut(S) := TRUE will
be set. Then, cut(S′) := TRUE will also be set for all S′ ⊇ S as in Step 1. Step 2 computes

1. If S′ ( S, then S′ should be executed before S.
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min
b∈S

IC(S\{b}) and its associated parent set. The values of π(S) and IC∗(S) in Step 2 are updated

in Step 3(b) only if IC(S) < IC∗(S). Once cut(S) :=TRUE is set for S, step 3 will not be
executed (IC(S′) will not be computed) for any S′ ⊇ S. However, it is possible that the value of
IC∗(S′) may become lower in Step 2.

Theorem 1 Algorithm 1 finds the parent sets π(S) for all S ⊆ {1, · · · , p−1} that minimize IC(p ∼
π) w.r.t. π ⊆ S.

Note that the value N log σ̂2{1,···,p−1} can be obtained outside the loop at the beginning of the
algorithm, and that checking the pruning rule requires only trivial computation. So, we expect that
the additional overhead for B&B is negligible.

If we remove Steps 1 and 3(a) from Algorithm 1, we obtain a pure dynamic programming
procedure to obtain π(S), S ⊆ {1, · · · , p − 1} without B&B. By embedding those steps, we can
avoid computating IC(S) for some S ⊆ {1, · · · , p− 1}.

4. Experiments

In this section, we show some results on experiments. Because an optimal solution will be obtained
even if the B&B is applied to the dynamic programming. we evaluate Algorithm 1 only by its
efficiency.

4.1 Using Various Information Criteria

We apply d(N) = 1 (AIC Akaike (1973)), d(N) = log logN (HQ Hannan and Quinn (1979)),
d(N) = 1

2 log n (BIC Schwarz (1978), MDL Rissanen (1978)), and d(N) =
√
N to artificial data

{(x1, · · · , xp)}Ni=1 with N = 100, 200, 400 and p = 11, 16, 21. For simplicity, we obtained parent
sets for p ∼ S with S ⊆ {1, · · · , p− 1}.

We first generate data for experimnts. For i = 1, · · · , p, we obtain xi ∈ RN as follows:

1. generate β1, · · · , βi−1 ∼ N(0, 1) and ε1, · · · , εN ∼ N(0, 1).

2. xi = αi
∑i−1

j=1 βjxj + ε ∈ RN with x1, · · · , xi−1 ∈ RN and ε =



ε1
...
εN


 ∈ RN

where αi > 0, i = 1, · · · , p, are constants. In particular, we consider three cases: α1 = · · · = αp =
1 (Table 1 (a)), α1 = · · · = αp−1 = 1, αp = 0.3 (Table 1 (b)), and α1 = · · · = αp−1 = 0.3, αp = 1
(Table 1 (c)). Because the optimal solution is always obtained, we evaluate Algorithm 1 only in
terms of efficiency. The actual execution time and the number of subsets S ⊆ {1, · · · , p − 1}
such that IC(s) is actually computed divided by 2p−1. We obtain insights from the experiments
for d(N) = 1, log logN, logN,

√
N , N = 100, 250, 1000, and p = 16, 21, 26. The algorithm

is executed via Rcpp (Eddelbuettel, 2013): each compiled Rcpp procedure runs as an R function
almost as fast as when the same procedure runs as a C++ function. The CPU we used in the
experiments was Core M-5Y10(Broadwell)/800MHz/2.

From Table 1 which contains all the numerical results in this subsection, we find that the exe-
cution is considerably efficient for most of the cases. For example, for the case p = 25, N = 100,
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Table 1: Ratio and Time for N = 100, 200, 400, p = 16, 21, 26, and d(N) = 1, log logN, 12 logN ,
and
√
N . The upper and lower figures are the ratios (how often IC(S) was computed

divided by 2p−1) and actual times (seconds). We measured those values for three cases:
(a) α1 = · · · = αp = 1, (b) α1 = · · · = αp−1 = 1, αp = 0.3, (c) α1 = · · · = αp−1 = 0.3,
αp = 1.

(a) α1 = · · · = αp = 1

d(N) = 1 d(N) = log logN d(N) = 1
2
logN d(N) =

√
N

p 100 250 1000 100 250 1000 100 250 1000 100 250 1000
16 0.114 0.129 0.155 0.110 0.125 0.154 0.099 0.114 0.152 0.052 0.068 0.114

0.32 0.46 1.05 0.29 0.37 0.96 0.25 0.36 1.0 0.25 0.30 0.75
21 0.044 0.052 0.056 0.049 0.051 0.055 0.041 0.050 0.055 0.021 0.032 0.044

0.44 13.87 20.80 10.20 11.71 21.92 9.91 11.94 21.48 9.41 0.43 7.79
26 0.0026 0.0033 0.0038 0.0024 0.0031 0.0038 0.0022 0.0029 0.0037 0.0009 0.0015 0.0025

467.24 390.25 396.79 563.92 468.81 564.89 524.23 530.17 452.89 517.27 497.81 547.59
(b) α1 = · · · = αp−1 = 1, αp = 0.3

d(N) = 1 d(N) = log logN d(N) = 1
2
logN d(N) =

√
N

p 100 250 1000 100 250 1000 100 250 1000 100 250 1000
16 0.233 0.261 0.241 0.228 0.261 0.240 0.224 0.258 0.238 0.171 0.207 0.216

0.44 0.77 1.95 0.37 0.73 1.78 0.41 0.79 2.31 0.52 0.83 2.18
21 0.021 0.029 0.023 0.021 0.026 0.023 0.019 0.025 0.022 0.0100 0.0151 0.0176

9.45 11.93 17.16 9.25 14.54 15.72 9.08 11.17 13.86 13.09 15.72 18.31
26 0.0036 0.0044 0.0035 0.0034 0.0043 0.0035 0.0032 0.0041 0.0035 0.00145 0.0240 0.0027

452.86 443.77 565.45 538.72 494.83 571.98 491.91 519.56 421.18 573.37 514.93 433.80
(c) α1 = · · · = αp1 = 0.3, αp = 1

d(N) = 1 d(N) = log logN d(N) = 1
2
logN d(N) =

√
N

p 100 250 1000 100 250 1000 100 250 1000 100 250 1000
16 0.432 0.428 0.410 0.422 0.419 0.408 0.402 0.402 0.403 0.193 0.266 0.335

1.08 0.97 3.33 0.64 1.00 2.78 0.59 0.95 2.88 0.34 0.63 2.5
21 0.247 0.273 0.265 0.230 0.266 0.263 0.204 0.253 0.259 0.0514 0.105 0.178

27.14 29.86 92.83 18.9 33.43 75.06 16.55 35.64 74.59 10.34 14.79 54.94
26 0.179 0.215 0.194 0.160 0.200 0.191 0.137 0.183 0.186 0.020 0.043 0.091

840.58 1170.8 2565.2 777.91 962.09 2147.7 824.31 1223.5 2758.2 535.86 562.68 1350.1
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d(N) =
√
N in (a), the ratio is 0.0009, which means only 0.0009 ×225 = 30, 198 information

criterion computations were executed out of 225 = 33, 554, 432.
For small p, the ration is around 10%, which means that Algorithm 1 makes ten times faster

than the same computation without B&B. However, it is not so efficient compared with for larger p
values. However, the computation does not take so much time either even if we do not use B&B.
For large p, we observe that the computation is extremely efficient using Algorithm 1, which is the
most attractive feature.

In particular, we observe that for the standard data, the proposed procedure runs more than
ten times faster and more than 100 times faster than the original without using B&B, which is
surprising because B&B runs at most three to five times for discrete data (Suzuki and Kawahara,
2017). Another significant observation is that the efficiency does not decay so much even when
d(N) is small while AIC (d(N) = 1) does not work efficiently for the discrete B&B procedures.

We also analyzed when Algorithm 1 does not work efficiently. If we compare (a)(b)(c) in Table
1, we find that (c) is the least efficient among the three. Note that the correlation between Xp

and other p − 1 variables is the least in (b), and that the correlation among the p − 1 variables
is the least in (c). Although the efficiencies for (a) and (b) are almost similar, those for (a)(b)
and (c) are significantly different. If we regard Xp and other p − 1 variables as a response and
predictors, respectively, we can consider that colinearlity among the p − 1 variables affects the
performance: if the colinearlity is large, since some redundant variables are included, Algorithm 1
detects unnecessary variables and save computations. However, if the correlation among them is
small, Algorithm 1 needs all the computations.

4.2 Using Actual Datasets

We apply Algorithm 1 to datasets Hitters and breastcancer in the R packages ISLR and gRbase, re-
spectively. Hitters (N = 322 and p = 20) contains 59 missing values and three catagory data, so that
we removed them (N = 263 and p = 17). The 17 variables are ”AtBat”, ”Hits”, ”HmRun”, ”Runs”,
”RBI”, ”Walks”, ”Years”,”CAtBat”,”CHits”,”CHmRun”,”CRuns”,”CRBI”,”CWalks”, ”PutOuts”, ”As-
sists”, ”Errors”,”Salary”. The breastcancer data set consists ofN = 250 samples for 1000 continuos
variables (gene expression) and one binary variable (case/control), and we use the first 20 gene ex-
pression data (N = 250, p = 20).

For each of the p variables X1, · · · , Xp, we computes a parent set π ⊂ S of Xi for each S ⊆
{1, · · · , p}\{i} and i = 1, · · · , p, where p = 17 and p = 20 for the Hitters and breastcancer data
sets.

We show the actual execution times in Figure 2 for the two data sets, and see that more than five
times faster and more than 20 times faster than the original procedure (without B&B).

5. Concluding Remarks

We constructed a dynamic programming framework and proposed a B&B approach for continuous
BNSL. The current bound works only for information criteria with large d(N). However, those
d(N) satisfy (2), and we may use those information criteria in various applications. In fact, in this
case, the sizes of parent sets are small, and the resulting Bayesian network is sparse (has few edges).

Intuitively, it seems that the pruning is easier for discrete BNSL than for continuous BNSL. This
is because the penality term increases by only one each time a variable is added to the parent set for
the continuous variable while the number of variables is multiplied at least two for discrete BNSL.

Branch and Bound for Continuous Bayesian Network Structure Learning

58



Figure 2:

Surprizingly, we find that the continuous counterpart is much more efficient. We are not sure about
the exact reason but the lower-bounds are different between discrete and continuous B&B.

Future work includes finding a better lower bound and finding the exact conditions under which
bound works best.
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